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PREFACE

Fluid dynamics is the science of flow of fluids. The
science of Fluid dynamics covers a vast area and  it is imposible
to described its basic fully within the covers of a single book.
It stretches accross a wide range of natural phenomena from
the swimming of microorganisms at one end to the evolution
of galaxies at the other. A good idea of the range of topics can
be obtained by a mere persual of the title of articles of
published every year in the Annual Reviews of Fluid
Mechanics.
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KINEMATICS
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1.4 Velocity of fluid, local rate of change and particle
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.0 Objective  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The main concern of the Science of Fluid is to study  the
motion of fluids or that of bodies in contact with fluid. Fluid
dynamics occupies an important place in modern science and
engineering. It forms one of the foundation of aeronautics and
astronautics, mechanical engineering, meteriology, marine
engineering, civil engineering, bioengineering and in fact just
about every scientific or engineering field.

In this unit basic concepts and definitions related to
fluid and its properties are discussed. Stream line, path line
and streak line are defined and the differential equations
whose solutions yield these lines are obtained. The condition
to be satisfied  by a boundary surface are derived. The equation
of continuity, the equations of motion and the equation of
energy are formulated. The concept of circulation has also been
given.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.1 Introduction :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A f luid is  a  mater ial  which f lows .  F luids  are
classified as liquids and gases. Liquids are not sensibily
compressible except under the action of heavy forces
whereas gases are easily compressible, and expand to fill
any closed space. A liquid at constant temperature and
pressure has a definite volume and when placed in an open
vessel will take, under the action of gravity, the form of
the lower part of the vessel and will be bounded above by
a horizontal free surface. All known liquids are to some
slight  extent compressible.  For  most  purposes it  is,
however, sufficient to regard liquids as incompressible
fluids.
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.2 Definitions and Basic Concept :
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

It is well known that matter is made up of molecules or
atoms which are always in a state of random motion. In fluid
dynamics the study of individual molecules is neither
necessary nor appropriate from the point of view of use of
mathematical methods. Hence, we consider macroscopic
behaviour which treat a fluid as having continuous structure
and so at each point we can prescribe a unique velocity, a
unique density, etc. The assumption of continuous distribution
of fluid in space is known as the continuum hypothesis. This
continuum concept of matter allows us to subdivide a fluid
element indefinitely. Furthermore, we define a fluid particle
as the fluid contained within an infinitesimal volume whose
size is so small that it may be regarded as a geometrical point.

An infinitesimal fluid element is acted upon by two
types of external forces, namely, body forces and surface
forces. Body forces are those which act on an element of mass
of a body and are proportional to the mass of the body on
which they act. A typical example of body forces is provided
by gravitational forces. Surface forces are those which arise at
points of the body surface and are proportional to the surface
area. Surface forces may be resolved into two components,
one normal and the other tangential to the surface upon which
they act. The normal component of the force per unit area is
called the normal stress or pressure and the tangential
component of the force per unit area is called the shearing
stress.  When an external force is applied to a solid,
deformation is produced in the solid. If this force per unit
area, viz. stress is less than the yield stress. the deformation
disappears when the applied force is removed. If the applied
stress is more than the yeild stress, of the material, it acquires
a permanent setting or even  breaks. If a shearing force is
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applied to a fluid, it deforms continuously as long as the force
is acting on it, regardless of the magnitude of the force. Thus
the yield stress for fluids is taken to be zero. A fluid is said to
be viscous or real when normal as well as shearing stresses
exist. On the other hand, a fluid is said to be non-viscous (or
inviscid or perfect or ideal) when it does not exert any shearing
stress, whether at rest or in motion. Clearly the pressure
exerted by an inviscid fluid on any surface is always along
the normal to the surface whereas the pressure at a point in a
stationary fluid is independent of direction. Due to shearing
stress a viscous fluid produces resistance to the body moving
through it as well as between the particles of the fluid itself.
Water and air are treated as inviscid fluid whereas glycerene,
syrup and heavy oils treated as viscous fluids. It is, however,
to be pointed out that it is, only imaginary situation where
the fluid is assumed to be inviscid and incompressible.

The density  of a fluid is defined as the mass per unit
volume. Mathematically the density ρ  at a point P may be
define as -

0
lim

m







where v  is the volume element around the point P and m
is the mass of the fluid within the volume v .

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.3 Lagrangian and Eulerian Methods  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

There are two methods of treating the problems of
fluids dynamics mathematically : (i) Lagrangian method and
(ii) Eulerian Method. In Lagrangian method we study the
history of each fluid particle i.e., any fluid particle is selected
and is pursued on its onward course observing the changes in
velocity, pressure and density at each point and at each instant.
Let (x0,y0,z0) be the coordinates of the chosen particle at a given
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time t=t0. At a later time t=t, let the coordinates of the same
particle be (x,y,z). Since the chosen particle is any particle in
the fluid, the coordinates (x,y,z) will be functions of t and also
of their initial values (x0,y0,z0), so that

     1 0 0 0 2 0 0 0 3 0 0 0x = x ,y ,z ,t , y = x ,y ,z ,t , z = x ,y ,z ,tf f f

Let u,v,w and ax,ay,az be the components of velocity and
acceleration respectively. Then we have

, ,
x y z

u v w
t t t

  
  
  

and
2 2 2

2 2 2
, ,x y z

x x x
a a a

t t t

  
  
  

In Eulerian method we select any point fixed in the space
occupied by the fluid and study the changes which take place
in velocity, pressure and density as the fluid passes through
this point. Let u,v,w be the components of velocity at the
popint (x,y,z) at time t. Then, we have

u=g1(x,y,z,t), v=g2(x,y,z,t), w=g3(x,y,z,t)

In this method x,y,z,t are four independent variables
and all other quantities are their functions. If we regard (x,y,z)
as a fixed point, then the values of u,v,w will tell us what
happens at that point as t changes; and if we regard t as fixed,
then since (x,y,z) may be any point of the fluid, u,v,w will tell
us what is happening at every point of the fluid at the
particular instant under consideration.

If we  wish to connect the Eulerian and Lagrangian
methods in any particular problem, we regard u,v,w as the
components of velocity of the fluid particle at the point (x,y,z)
and the relation between the two sets of symbols

are then , ,
dx dy dz

u v w
dt dt dt

  

5



__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.4 Velocity, Local rate of change and Particle rate of change  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Velocity :

Let a fluid particle be at the point P at time t and let the
same fluid particle be at the point Q at time t+ t  such that

 
OP= r  and 

 
OQ= r +δr

Then in the interval of time t  the movement of particle is


PQ=δr  and hence the particle velocity 

q  at the point P is

0t

r
q Lim

t










   d r

dt





   
dx dy dz

i j k
dt dt dt

  

  

   i u j v k w
  

  

where , ,i j k
  

 are unit vectors in the directions of x,y,z

respectively.

Thus the velocity 

q  is a function of 


r  and t, say

  
 
 

q =f r ,t

If the form of the function f is known, we know the motion of
the fluid. If the fluid velocity and all fluid properties say
density, pressure, temperature etc., together with the
conditions associated with the motion of the fluid are
independent of the time so that the flow pattern remains
unchanged with respect to the time, the motion is said to be
steady. In case  of steady motion, in terms of mathematics,
derivative of any fluid property with respect to time will be
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zero. If the fluid properties and conditions at a given point
depend not only on the position of the point but also the time,
the flow is said to be unsteady.

Material, Local and Convective Derivatives  :

Let the fluid in motion be asociated by a scalar point

function  x,y,z,t  or  r ,t


. Keeping the point  P (x,y,z) fixed,

the change in   during an interval of time t  is

   , , , , , ,x y z t t x y z t     or    r ,t+δt r ,t 
 



Hence the local time rate of change t

  is given by -

 


 



   
       

 δt 0

r ,t+δt - r ,t
lim

t δt

where δ r


 is the change in the position of the fixed particle

during the short time t . Therefore

   
δt 0

r +δ r ,t+δt - r ,td
lim

dt δt

 
  




gives the individual time rate of change.

Let  q u,v,w


 be the velocity of the fluid particle, such that

q= i u+ j v+kw
  

 and 
dx

u
dt

  etc.

then
dyd dx dz

dt t x dt y dt z dt
       
   
   

      u v w
t x y z
      

   
   
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     i u+ j v+kw . i j k
t x y z
                        

  


  


d
q

dt t
.

Similarly for a vector point function  F r ,t
 

 associated with

some fluid property (say, velocity) we can show that

dF F
q F

dt t
.

 
 

  


........(1.1)

thus for both scalar and vector point functions we have
established operational equivalance.

d
q

dt t
.

 
  


........(1.2)

applicable to both scalar and vector functions of position and
time, provided that these functions are associated with the

properties of the moving fluid. 
d
dt

 is called the material (or

particle or subtantial) derivative, or derivative following the

motion of the fluid. The term q.
 
  is called the convective

derivation and it is associated with the change of a physical

quantity   or F


 due to the motion of the fluid particle. t

  is

known as  Local derivative.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.5 Acceleration of Fluid at a point :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Let a fluid particle be travelling along a curve. At time

t let its position on the curve be  P r


 and its velocity q


; along

the tangent at the point P to the curve be in the direction of
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the motion of the particle. Then the instantaneous acceleration

f


 at the point P is obtained by replacing F


 by q


 in (1.1) as

d q q
= + q . q

dt t
f

 
        

........... (1.3)

The expression  q. q
 
  can be written as  1

2
2q qx xq

       
 

Hence, the expression for acceleration vector f


 given by (1.3)

can also be written as

2d q 1 q q x x q2dt
f


               

 ........... (1.4)

In cartesian co-ordinate system the components fx, fy and

fz of acceleration f


 in the direction of x,y and z are

respectively given by -

and

x

y

z

u u u u
f u v w

t x y z

v v v v
f u v w ........(1.5)

t x y z

w w w w
f u v w

t x y z

   
        

   
        

   
    
    

where u,v,w are the components of the velocity in the
directions of x,y,z respectively.

In cylinrical polar coordinates (r, θ ,z) the components
of the acceleration in the directions of r, θ  and z are respectively
given by--
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and 

2

r

θ

z

u u v u u v
f u w

t r r θ z r
v v v v v uv

f u w ........(1.6)
t r r θ z r
w w v w v

f u w
t r r θ z

   
         
             
            

where u,v,w are the velocity components in the directions of
r, θ ,z respectively.
In spherical polar co -ordinates (r, θ ,z) the components of the
acceleration in the directions of r, θ ,  are respectively given by-

2 2u u v u w u v +wf ux r rt r θ rsinθ

2v v v v w v w cotθ uvf u ........(1.7)r r rθ t r θ rsinθ

w w v w w w uw vwcotθf u r r rt r θ rsinθ





 

















       
   

        
   
        
   

where u,v,w are the velocity components in the
directions of r, θ ,  respectively .

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.6 Path lines, stream lines and Streak lines  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

If we fix our attention on a particular fluid particle then
the curve which this particle describes during its motion is
called its path line.

Let the coordinate of a fluid particle be 


 at the time of

start (t=o) and its coordinate after the time t be X


, then X


 is a

function of t and 


, i.e.

 i i 1 2 3X X , t , X X , , , t   
     

 
 ................ (1.8)
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The initial coordinate 


of a particle is called as material

coordinate or convected coordinate and the coordinate X


 as
spacial coordinate. Motion is assumed to be continuous so that
(1.8) can be inverted as

 i i 1 2 3X, t , X ,X , X , t   
     

 
  ...................... (1.9)

If the velocity is given in the spacial coordinates, the solution
of the differential equations

d X
X, t

dt
q


    
 

 or  id X
X , t

dt
q




   ..................... (1.10)

(with initial conditions corresponding to t 0,X 
 

  ) leads to

the pathlines X X , t
     

 
. The differential equation (1.10)

shows that the path of a point in the material is always
tangential to its velocity. In this interpretation, the path line
is the tangent curve to the velocities of the same material point
at different times. Time is the curve parameter, and the

material coordinate 


 is the family parameter.

A stream line or line of flow is a curve drawn in the
fluid such that at any instant of time the tangent at any point
of it is the direction of the motion of the fluid at the point.

stream lines are solutions of three simultaneous
equations

 
i

1 2 3
i

dx
= q x ,x ,x ,t

ds
......................... (1.11)

where s is parameter along the stream lines. The parameter s
is different from time occuring in the equation (1.10). The time
t is taken fixed while integrating the equation (1.11), which
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gives the  stream lines at the instant t. The stream lines alter
from instant to instant.

From the definition of streamlines, it is clear  that if two
stream lines intersect each other then the fluid particle at the
point of intersection will have two directions of velocity which
is meaningless unless the velocity is taken to be zero at that
point . Hence the point where two stream lines intersect has
zero velocity, and such a point is called the stagnation point.

A streak line is a line on which lie all those fluid particles
that at some earlier instant passed through a certain point in
the fluid. Thus a streak line presents the instantaneous picture
of the positions of all fluid particles, which have passed through
a given point at some previous time. Examples of streak lines
are smoke trails from chimneys or moving jets of water.

The equation of the streak line at time t can be derived
by Lagrangian method. At time t the streak line through a fixed

point  is a curve going from  to x


 ( , t). A particle is on the

streak line if it passed the fixed point  at some time between
o and t. If this time were  , then the material coordinate of

the particle will be given by ( , )   
   . However, at time t

the particle is given by ,x x t
     

 
. So that the equation of the

streak line at time t is given by

[ ( , ), )]where 0 t.X X t     
  

To obtain the streak lines, first we solve the equation (1.10) to
get the pathlines as

i 1 2 3X ( , , , )if t   ... (1.12)

and  the X i is replaced by i and t by to get

i 1 2 3( , , , )if     ... (1.13)
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The curve obtained by eliminating 1 2 3, ,    between the

equations (1.12) and (1.13) will give streaklines as

i 1 2 3X ( , , ,t,τ)i    ... (1.14)

Pathlines, streamlines and streaklines coincide for steady
motion.
_________________________________________________________________________________________
1.7 Velocity Potential, rotational and irrotional motion
____________________________________________________________________________________________

The equation (1.11) for stream lines can be written in
cartesian co-ordinates as

 
dx dz dz

u v w
  ...(1.15)

where  u, v, w are velocity components in the directions of
x,y,z respectively. The stream lines are cut perpendicularly
by the surfaces given by the differential equation

udx + vdy + wdz = 0 ... (1.16)

The condition that (1.16) is integrable is

q . curl q 0
    
 

... (1.17)

Since the fluid is in motion q 0


 , in general, at all points, hence

if curl q 0


  the equation (1.17) is always satisfied i.e. if the

velocity vector q


 can be expressed as the gradient of a scalar
function   as

q 
 

  ... (1.18)

This scalar function   is known as velocity potential. The

negative sign in the equation (1.18) is mere a convention and
assures that the flow takes place from higher potential to lower

13



potential. When (1.18) holds, the flow is said to be of the
potential kind.  It is also said to be irrotational for

q curl q 0
  

    . The equation (1.17) may also be satisfied

if q


 is perpendicular to curl q


 even though q 0


 . In such
cases, the velocity potential will not exist inspite of the fact
that surfaces cutting the stream lines orthogonally exist.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.8 Conservation of Mass and continuity equation  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

There are various approaches for deducing
conservation laws. We adopt that one in which a certain
volume of a fluid is isolated by an imaginary closed surface
from the rest of the fluid and it is considered that the effect of
the entire fluid on the isolated portion is taking place through
the surface only. This Principle is called the principle of
isolation. Let us apply this principle to deduce the equation
of continuity.

Consider an arbitrary closed fixed surface S lying

entirely in the fluid enclosing a volume V. Let n


 denote a
unit vector in the direction of a normal drawn outwards at a
point on a surface element ds of the surface S. Taking the

velocity vector as q


, the rate at which the fluid flows into the
surface through the boundary is given by

S

ρ q .n  ds
    
  ... (1.19)

where ρ is the density of the fluid. The expression (1.19) can
be written, by using Gauss’s theorem, as

V

. ρ q  dv
     
  ... (1.20)
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The mass of the fluid within the volume V is

V

ρdv ... (1.21)

If no fluid is created or annihilated within the surface S
then the mass can only increase by the flow through the
boundary. So, by the law of conservation of mass, the rate of
increase of the mass of fluid within V must be equal to the
total rate of mass flowing into V. Hence, we have

 
V V

ρdv . ρ q  dv
t

       
   

or
V

ρ
. ρ q  dv = 0

t

         ... (1.22)

Since the equation (1.22) holds good for every arbitrary volume
V enclosed by an arbitrary surface S therefore the integrand
itself must be zero i.e.

ρ
. ρ q 0

t

     
   ... (1.23)

which can also be written as -

ρ
q . ρ  +ρ .q dv 0

t

         
  

or q . ρ +ρ .q 0
t

          

or
dρ

ρ .q 0
dt

     
  ... (1.24)

The equation (1.24) is known as the equation of

continuity. In the case when the fluid is incompresible 
dρ

0
dt



and since ρ 0  hence we have

.q 0
 
  ... (1.25)

The equation of continuity in orthogonal curvilinear
coordinates can be written as

15



     2 3 3 1 1 21 2 3
1 2 3

ρ 1
ρuh h ρvh h ρwh h 0

t h h h x x x

            
 ...(1.26)

where u,v,w are velocity components along the direcctions of
x1,x2,x3 respectively. The equation of continuity in cartesian
co-ordinate system (x,y,z) is given by

     ρ
ρu ρv ρw 0

t x y z

   
   

    ... (1.27)

where u,v,w are velocity components in the directions of x,y,z
respectively.

The values of h1,  h2 and h3 in cylindrical polar
coordinates are 1, r and 1 respectively. Hence, by using the
equation (1.26) the equation of continuity in cylindrical polar
coordinates (r, θ , z) can be written as

     r z

ρ 1 1
. ρq r . ρq ρq 0

t r r r θ z
   

   
   

... (1.28)

where , ,r zq q q  are vel. components in the  direction of r, θ , z

respectively.

In spherical polar co-ordinates h1= 1, h2= r  and h3= r

sin θ  and hence the equation of continuity in  r,θ,  system

can be written as

     2
2

ρ 1 1 1
. ρur . ρvsinθ . ρw 0

t r r rsinθ θ rsinθ 
   

   
     ..(1.29)

where , ,u v w  are velocity components in the directions of
r,θ,  respectively
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.9 Boundary Condition and Boundary Surface :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

When an inviscid fluid is in contact with a rigid solid
surface or with another immisible fluid then the fluid and the
surface (in contact) must have the same velocity normal to the

16



surface. No condition is put on the tangential component of
velocity of the fluid.

The pressure of the fluid must act in a direction normal
to the boundary.

At the surface of separation of two immiseble fluids,
the pressure must be comtinuous when we pass from on side
of the surface to the other side.

A surface is said to be a boundary surface if it preserves
contact with the fluid.

The contact between the fluid and the surface will be
maintained if the fluid and the surface have the same velocity
along the normal to the surface. Let P be a point on the moving

boundary surface F r ,t =0
  
 

 or F(x,y,z,t)=0, where the fluid

velocity is q


 and the velocity of the surface is u


, now since

the normal component of the velocity of the fluid is equal to
th normal component of the velocity of the surface, we have

q .n u .n
   

 ... (1.30)

when n


 is the unit normal vector drawn at the P on the
boundary of the surface.

Since F

  is in the direction of the normal to the surface

F r ,t =0
  
 

 hence n


 and F

  are paralled to each other. Thus

(1.30) can be written  in the form

q . F u . F
   
  

Let P r ,t
  
 

 move to a point Q r r ,t+ t 
   
 

 in time t  .

Since Q also lies on the surface F r ,t =0
  
 

 hence F r r ,t+ t 0 
    
 

.

Expanding this equation by Taylor’s theorem and retaining
upto first order terms, we get

17



F
F r ,t r . F+ t 0

t
 

              

Also F r ,t =0
  
 

. Hence above equation becomes

r F
. F+ 0

t t





 
 


... (1.31)

Taking the limit as t  tends to zero, equation (1.31) becomes

     F d r
. F=0

t dt




 


F
u . F=0

t

 
  


... (1.32)

F
q . F=0

t

 
  


(since q . F= u . F

   
  )

q . F=0
t

      

dF
=0

dt


This is the condition for the surface to be a possible form of
boundary surface. The normal component of the velocity of
the boundary  is given by

  u . n
 

F
u .

F











F
t

F



 
 (by using 1.32)

F

t
F F F

x y z
i j k
  


 

  
 

  
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.10 Worked Example  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Example 1. The components of velocity of a flow in cylindrical

polar coordinates are  2 2r zcosθ, r z sinθ, z t .  Find the

components of the acceleration of a fluid particle.

Solution : Let u, v, w denote the velocity components in
cylindrical polar coordinates. It is given that

2 2u r zcosθ,    v r z sinθ,    w z t   ... (A)

If r θ zf , f , f  denotes the components of acceleration in

cylindrical polar coordinates then

2

r

u u v u v u v
f u

t r r θ r z r

   
    
   

                  2

2 2 2 2 rz sinθr z sinθ
0 r zcosθ 2r z cosθ r z sinθ z t r cosθ

r r
       
 

 2 2 2 2 2
rf rz 2r cos θ r sin θ r t cosθ sin θ   

In a like manner f and fz can be calculated.

Example 2 : If the velocity components u,v,w, in cylindrical
polar co-ordinates are

2 2

2 2

a a
u U 1 cosθ,   v U 1 sinθ,   w 0

r r

   
        

   

then derive the equation of stream lines.

Solution : The equation of stream line is q x d r 0
 

  which in

orthogonal curvilinear coordinate system can be written as

3 31 1 2 2 h dxh dx h dx

u v w
  ... (A)
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In cylindrical polar coordinates system

h1=1, h2 = r, h3 = 1

and dx1 = dr dr2 = d θ , dr3 = dz

Hence  equation (A), in this case, becomes

dr rdθ dz

u v w
 

Now putting the given values of u,v, w in above
equation, we get,

2 2

2 2

dr rdθ dz

0a a
U 1 cosθ U 1 sinθ

r r

 
   

     
   

2

2

2

2

a
U 1 dr

r cosθ
dz 0, dθ

sinθa
Ur 1

r

 
 

   
 

  
 

 
2 2

2 2

r a
z constant, dr cotθ dθ

r r a


   



1 2 2

2rdr dr
z c , cotθ dθ

r a r
    


2 2

1 2

r a
z c , log logsin θ log C

r


    

2 2

1 2

r a
z c , sin θ C

r

 
   

 

2

1 2

a
z c , r sin θ C

r

 
    

 

These are the required equations of the the stream lines.
Example 3 : Does a velocity field given by

3 2q = 5x i 15x y j t k
   

 

represent a possible incompressible flow of fluid?
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Solution : In order to check for a physically possible
incompressible fluid flow, on has to look for its compliance
with the equation of continuity.

The equation of continuity, for a three dimensional
incompressible flow, in cartesian coordinate system can be
written as

u v w
0

x y z

  
  

  

Here, u = 5x3,    v = - 15x2y   and     w = t

Hence, 
2 2u v w

15x , 15x and 0
x y z

  
   

  

which, on substitution in the continuity equation satisfies
it for all values of x,y,z and t values. This shows that the
above velocity field represents a physically possible
incompressible flow.

Example 4 : show that the surface    2 2 2 2 2 2x a tan t y b cot t 1 

is a possible  form for the bounding surface of a liquid, and
find an expression for the normal component of velocity.

Solution : Here, 
2 2

2 2
2 2

x y
F(x, y, t) tan t cot t 1 0

a b
   

F(x,y,t) can be a possible bounday surface, if it satisfies
the boundary condition.

F F F
u v 0

t x y

  
  

   ... (A)

Here,
2 2

2 2
2 2

F x y
2.tan t.sec t 2.cot t.cosec t

t a b


 



2
2 2

2 2

F 2x F y
tan t, cot t

x a y b

 
 

 

with these values, (A) reduces to

   2 2
2 2

2x tan t 2ycot t
x sec t u tan t ycosec t v cot t 0

a b
    
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which will be identically satisfied if we take
2 2x sec t u tan t 0 and ycosec t v cot t 0    

i.e.
x y

u     and v
sin t. cos t sin t. cos t

 

i.e.
u 1 v 1

    and
x sin t. cos t y sin t. cos t

  
 

 

These values of u

x




 and 
v

y




 satisfy the equation of

continuity for a liquid viz. u v
0

x y

 
 

 
 . Hence these values of

u and v represent a possible motion of a liquid and therefore
the given surface represent a possible boundary surface.

Normal component of velocity

22

F F
u v

x y

F F
 

x y

 


 
           

2 2

2 2

2 22 2

2 2

x 2x tan t y 2y cot t
. .

sin t. cos t a sin t. cos t b

2x tan t 2y cot t
 

a b

 


   
   

   

2 2 2 2 2 2

2 4 4 2 4 4

a y cot t.cosec t b x tan t.sec t

 x b tan t  y b cot t 






__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.11 Check your progress :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. Does a velocity field given by
2

2 2

k
q x i y j

x y

     
   (k = constant)
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represent a possible incompressible flow of fluid ? If
so, determine the equations of the stream lines. Also
test whether the motion is of the potential kind and if
so determine the velocity potential.

2. If the velocity components u,v,w in spherical polar co-
ordinates are

3 3

3 3

a a
u U 1 cosθ, v U 1+ sin θ,  w 0

r 2r

   
       

   

then derive the equations of the stream lines.

3. Steam is rushing from a boiler throught a conical pipe,
the diameters of the  ends of which are D and d; if V
and v be the corresponding velocities of the stream, and
if the motion is supposed to be that of divergence from
the vertex of the cone, prove that

2 2 2

2

v D v V
 exp  

V d 2k

 
  

 

where k is the pressure divided by the density, and
supposed constant.

4. Liquid is contained between two parallel planes; the free
surface is a circular cylinder of radius a whose axis is
perpendicular to the planes. All the liquid within a concentric
circular cylinder of radius b is suddenly annihilated. Prove

tha if ω


 be the pressure at outer surface, the initial pressure
at any point of the liquid distant r from the centre is

log r  log b
ω

log a  log b








5. Explain the method of differntiation following the fluid,
and find the condition that  the surface F(x, y, z, t) = 0
may be a boundary surface. Prove that the variable
ellipsoid
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2 2 2
2

2 2 4 2 2

x y z
Kt 1

a k t b c

 
   

 

is a possible form of boundary surface.

6. An infinite mass of fluid is acted on by a force 3
2r

per unit mass directed to the origin. If initially the fluid
is at rest and there is a cavity in the form of the sphere
r = c in it, show that the cavity will be filled up after an

interval of time 
1

2
5

4
2

C
5

 
 
 

.

7. The velocity components in a three dimensional flow
field for an incompressible fluid are (2x,-y,-z). Is it a
possible field? Determine the equations of the stream
line passing through the point (1,1,1).

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.11 Let us sum  up :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Points to Remember :

 The basic mathematical idea of fluid motion is that
it can be described by a point transformation.

 All the fluid properties (pressure, velocity, density,
tempreature, etc.) of a system, in continuum approach,
are functions of space coordinates and time

 A fluid is a substance that deforms continuously
when subjected to even an infinitesimal shear stress.

 Kinematics of fluid deals with the geometry of fluid
motion. It characterizes the different types of motion.

 A flow is defined to be steady when the
hydrodynamic parameters and fluid properties
at any point do not change with time.

 A stream line at any instant of time is an imaginary
curve or line in the flow field so that the tangent to
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the curve at any point  represents the direction of
the instantaneous velocity at that point. A path line
is the trajectory of a fluid particle of a given identity.
A streak line at any instant of time is the locus of
temporary locations of all particles that have passed
through a fixed point in the flow. In a steady flow,
the streamline, path lines and streak lines are
identical.

 The existance of a physically possible flow field is
verified from the principle of a conservation of
mass. Continuity equation is the equation of
conservation of mass in a fluid flow. The general
form of the continuity equation for an unsteady
compressible flow is given by

. q 0
t

 
     

  

where q


 is the velocity vector.

 A fluid element in motion possesses
intermolecular  energy, kinetic energy and potential
energy.

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
1.13 Further readings :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

1. Fluid Mechanics, Landau and Lifshitz.
Butterworth-Heinemann, Oxford.

2. Theoretical Hydrodynamics by L.M. Milne-
Thomson.
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.0 Objective  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this unit the governing equation of motion of fluid
will be derived. the governing equation will be derived for
ideal fluid where we consider fluid motion with the no viscous
effect. The force in action in the motion will be pressure force.
The gravitational force are often neglected. The equation of
motion thus obtained will be on consideration for conservation
of momentum of fluid element.

If the forces in action are conservative and flow is of
potential kind, then the equation will take special form which
will also be discussed here.

The equation of motion for the forces which act only
for a very short duration will also be discussed in this unit.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.1 Introduction  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Historically, there have been two different approaches
taken to describe the equation of fluid dynamics : the
phenomenological approach and kinetic theory approach. In
phenomenological approach, certain relation between stress
and rate of strain are postulated and the fluid dynamics
equation are then developed from the conservation laws. In
the kinetic theory approach (also called Mathematical theory
of non uniform gases) the fluid dynamic equations are
obtained with transport coefficients defined in terms of certain
internal relations. In this approach mathematical uncertainity
takes place contrary to the involvement of experimental
uncertainty in phenomenological approach. Here our
approach will be Mathematical.

The governing equation of motion that will be presented
will be derived from conservative laws of momentum which
is nothing more than Newton’s second law of motion. When
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this law is applied to an element of fluid flow, it yields a vector
equation known as momentum equation. In the context of
inviscid fluid we call it Euler’s equation of motion.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.2 Euler’s equation of Motion  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Consider a non-viscous fluid occupying a certain region.
In this region let V be the volume enclosed by a surface S which
moves with the fluid and so contains the same fluid particles
during  its motion. Within the surface S let dv be the volume
element surrounding  a fluid particle P of density  , since the
volume element is moving with the fluid hence the mass  dv

of this fluid element remains constant all times. Let q


 denote

the velocity of the fluid particle P and ρ denote the pressure
at a point of the surface element ds which has an outward

drawn normal n


.
Newton’s second law of motion states that the rate of

change of linear momentum is equal to the sum of forces.
The forces are due to (i) the pressure which is acting at each

point of the boundary in the normal directions; (ii) the external

force F


 per unit mass acting on the fluid within the surface S.
Thus the total forfce acting on the volume V is

S V V V

n ds FdV  dV Fdv 
          

    
using Gauss’s theorem. Equating this force to the rate of change

of linear momentum 
V

d
dv q

dt




 we get

V V V

d
dv q p  dv Fdv

dt
 

       
   

or  
V V V

d q d
dv q dv F p dv

dt dt
  


   

      
  

 
  
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Noting that  d
dv 0

dt
  , above equation becomes

V

d q
F p dv 0

dt
 


  

     
   



Since the volume of integration is arbitrary hence above
equation will be identically satisfied if we take integrand equal
to zero, i.e.

d q
F p 0

dt
 


     

 

or d q
F p

dt
 


 

  ... (2.1)

This equation is known as Euler’s equation of motion.

Above equation can also be writen as

q 1
q . q F P

t 


          

  
... (2.2)

or
2q 1 1

.q q x curl q F P
t 2 

             
... (2.3)

In the case when the body force F


 is conservative and

that the flow is of the potential kind, there exist scalar functions

  and   such that

F
 
  and q 

 
 

In such a case curl q 0

  and equation (2.3) becomes

21 1
.q p

t 2




                
... (2.4)

Taking dot product of (2.4) by d r


 and noting that

f.d r df
 
  , We get

21 1
d d .q d dp

t 2




             
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Integrating and rearranging the terms of the above
equation we get

 
2q dp

t
2 t

f





  
  ... (2.5)

where  tf  is an arbitrary function of t. This equation is known

as Bernoulli’s equation in its most general form. In the case of
steady flow  (2.5) takes the form

2q dp
Constant

2 
  ... (2.6)

Further, if the fluid is homogeneous and in-
compressible so, that   is constant, (2.6) becomes

2q p
Constant

2 
    ... (2.7)

In absence of external body forces (2.7) reduces to
21

2p+ q Constant 

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.3 Impulsive Motion :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

If sudden velocity changes occur at the boundaries of

an incompressible fluid or impulsive forces are made to act

its interior then the impulsive pressure at any point is the same

in every direction and the distrubances produced in both cases

are propagated instantaneously throughout the fluid.

consider an arbitrary closed surface S moving with a
non-viscous fluid such that it encloses a volume V. Let us

suppose that the fluid is subjected to external impulses I


 per

unit mass and to impulsive pressure ω


 on a surface element

ds. Also let n


 denote the unit outward normal vector. If 
2q


 is

the velocity generated in the element which was previously
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moving with velocity 
1q


 then by applying Newton’s second

law of motion, we get,
Total body forces = Change of momentum

2 1

V S V

I ρdV n ωds = ρ q q  dv
        

   


where ρ is the density in the fluid element.
Using Gauss’s theorem we get

     2 1

V V V

I ρdV ωdv = ρ q q  dv
       

   


 2 1

V

I ρ ω ρ q q  dv = 0
        

 


Since the volume of integration is arbitrary hence the
integrand of the last integral vanishes.

2 1I ρ ω ρ q q 0
         

 



or 2 1

1
I ω q q

ρ

   
   



... (2.8)

This is the general equation of impulsive motion. In the
special case when external impulsive body forces are absent,

i.e. I


=0 whereas impulsive pressures are present then
equation (2.8) reduces to

     2 1

1
ω q q

ρ

  
   



... (2.9)

2 1

1
. ω . q q

ρ

                 



... (2.10)

Further, if the fluid is incompressible, the equation of
continuity gives

1 2.q 0 .q
   
   ... (2.11)
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Using (2.11) in (2.10), we get

2 ω 0 
 ... (2.12)

Above equation states that in absence of external body
forces, for an incompressible fluid, impulsive pressure satisfies
Laplace’s equation.

In the case when external impulsive body forces are absent,

i.e. I 0

  and the flow is of potential kind (i.e. 

1q 
 
  ) then

1 1q 
 
   and 

2 2q 
 
  ... (2.13)

Therefore equation (1.40) reduces to

2 1

1
ω

ρ
 

  
    



2 1ω ρ  
       

 



2 1ω .d r ρ .d r 
              

   



 2 1d ω ρ    


Integrating when  is constant, get,

2 1ω ρ C 
       
 



... (2.14)

The  constant  C  may  be  ommited as  an ex t r a
pressure, constant throughout the fluid, would not effect
the motion.

From above analysis it can be concluded that a potential
motion can be produced instantaneously from rest by a set of
impulses properly applied at any point and the velocity
potential, in this case, is the impulsive pressure divided by
the density.
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.4 The Rate of Change of Energy  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Theorem : The rate of change of total energy (Kinetic, potential
and intrinsic) of any portion of a fluid as it moves about is
equal to the rate of working of the pressure on the boundary
if the potential due to the external forces are independent of
time.
Proof : Consider an arbitrary closed surface S drawn in the fluid
let V be the volume of the fluid within S. Let ρ  be the density of
the fluid particle at the point P and dv be the volume element

surrounding the point P. Let q r , t
   
   be the velocity of the fluid

particle.The Euler’s equation of motion is

d q
ρ p+ρ F

dt


 

  ... (2.15)

Taking the external forces to be conservative i.e. F

  ,

considering   to be independent of time i.e. 0
t





 and taking

the scalar product of (2.15) with q


 , we get

d q
ρ q . q . p ρ q .

dt


    

    

or
2d 1

ρ q q . q . p
dt 2

                  

or
2d 1

ρ q q . q . p
dt 2 t

                     

or
2d 1 d

ρ q q . p
dt 2 dt

            

or
2d 1

ρ q q . p
dt 2

      
 
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Multiplying the above equation by the volume element
dV and integrating over the volume V, we get,

     
2

V V

d 1
ρ q dV q . p dV

dt 2

             

2

V V

d 1
ρ q dV q . p dV

dt 2

                
 

 d
ρdV 0

dt
  
 


2

V V V V

d 1
pq dV+ ρ dV . p q dV+ p .q dV

dt 2

               
    ... (2.16)

The kinetic energy T, potential energy W and internal
energy I of the fluid are given by

2

V V V

1
T q dV,       W ρ dV,         I ρEdV

2
      ... (2.17)

where E is the internal energy per unit mass.

It can be shown that

dE
ρ p .q

dt

    
 

Hence
V V V

dI d dE
ρEdV ρ dV p .q dV

dt dt dt

 
       ... (2.18)

Using (2.17) and (2.18) in (2.16), we get,

 
V

d
T+W+I . p q dV

dt

    
 

 
S

d
T+W+I n. p q ds

dt

     
  ... (2.19)

= the rate of working of pressure
    on the boundary.
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__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
2.5 Circulation and Kelvins Circulation Theorem :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Consider a closed curve C situated entirely in a moving

fluid. Let q


 be the velocity vector and n


 be a vector drawn in
the direction of tangent at an arbitrary point P of the curve. The
direction of the tangent is so chosen that an observer moving

from the point P in the sense of n


 describes the curve in the
positive direction. Let Q be such a point on the curve, adjacent to
P, that the arc PQ be of infinitesimal length δs  . We form the

scalar product q .n.δs = q .d s
   

 at the point P, where δ s


 is the

directed element of the arc at the point.

Forming similar products at points Q, R, . . . and so on
right round the curve back again to the point P, we define the
circulation of the velocity vector round the curve C by the
relation

δs 0
Circulation      Lt q .d s

 


 

 
C

q .d s
 

 

C

Circulation      q .d r
 

  ... (2.20)

We can form the circulatuion of any vector round a curve in a
like manner.
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If the motion is of potential kind or (irrotational) then q 
 
 

where   is the velocity potential. In this case (2.20) becomes

C

Circulation      .d r
 

  

C

d 

 C

It  follows that if the motion is irotational and the velocity
potential is single valued, the circulation in every closed circuit
in the fluid is zero. However, if the region in which the
irrotational motion takes place is not simply connected (A region
in which every circuit can be shrunk to a point of the region
without passing outside the region is known as simply
connected), the circulation in any two reconciable circuits must
be the same, but the velocity potential, will not, in general, be
single valued.
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Kelvin’s Circulation Theorem :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Theorem : If the external forces are conservative and are
derivable from a single valued potential function, and the
density is a function of pressure only then the circulation in
any closed circuit moving with the fluid is constant for all time.

Proof : Let C be a closed circuit moving with the fluid. Let q


be the velocity at any point P r
  
 

 of the circuit. If   denote

the circulation along the closed circuit C then from definition
of circulation we get,

C

q .d r
 

  

 
C

d d
q .d r

dt dt

 
   
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C

d d
q .d r

dt dt

      
 

C

d d q d
.d r q . . d r

dt dt dt


          

   


C

d d q
.d r q .d q

dt dt


       

  


2

C

d 1 1
F . p .d r d q

dt ρ 2

             
   


(Using Euler’s equation of motion)

2

C

d 1 1
. p .d r d q

dt ρ 2

              
   



2

C

d 1 1
d dp d q

dt ρ 2

            


2

C

d dp 1
q

dt ρ 2

 
    

 
  ... (2.21)

Since  , p and q are single valued functions of r


therefore, on passing once round the circuit, the change
expressed in (2.21) is zero.
thus

d
0

dt
 

which implies that the circulation is constant along C for all times.
_________________________________________________________________
2.6 Worked examples  :
_________________________________________________________________

Example 1 : If a bomb shell explodes at a great depth beneath
the surface of the  sea, prove that the impulsive pressure at
any point varies inversely as the distance from the centre of
the shell.
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Solution : In the present case if we use spherical polar coordinates
then the velocity will be in the direction of r only, so the equation
of continuity will be satisfied if ur2 = C where u is the velocity, C
is a constant and origin is take as the point of explosion. there is

no external impulse i.e. I 0

  and the equation (2.9) gives

21 d ω
u c r

dr
  



or
C

ω D
r


 



When r α, ω 0 


 gives D=0, we have

c
ω

r






which shows that the impulsive pressure ω  is inversely

proportional to the distance.

Example : Show that the velocity field

   
 

 
 

2 2

2 22 2 2 2

B x -y 2Bxy
u x,y , v x,y , w 0

x +y x +y
  

satisfies the equation of motion for an inviscid incompressible
flow. Determine the pressure  associated with the velocity
field. Here B is constant.
Solution : Euler’s equation of motion eg. (2.1) in the absence
of external forces is

dq 1

dt ρ
p  



or
1

.
t ρ

q q p
       

 

But the motion is two dimentional w=0, ui vj 

q

1 p p
u v i j

t x y ρ x y

       
               


q
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Putting the value

 
   

 
2 2

2 22 2 2 2

B x -y 2Bxy 1 p p
ui vj i j

t x y ρ x yx +y x +y

                     

As u,v are independent of t, by assumption

u v
0

t t

 
 

 
Hence the last euqation gives

 
   2 2

22 2

B 1 p p
x -y 2xy ui vj i j

x y ρ x yx +y

      
            

Equating the coefficients of i and j from both sides, we get

 
   

 

2 2

2 2
2 22 2 2 2

B x -y1 p B
x -y 2xy

ρ x x yx +y x +y

   
       ........(1)

 
 

 
2 2

2 22 2 2 2

1 p B 2Bxy
x -y 2xy

ρ y x yx +y x +y

   
        .........(2)

But  
 

 

2 22 2

2 32 2 2 2

2x 3y -xx -y

x x +y x +y

        
.........(3)

 
 

 

2 22 2

2 32 2 2 2

2y 3x -yx -y

y x +y x +y

        
.........(4)

 
 

 

2 2

2 32 2 2 2

2y y -x2xy

x x +y x +y

        
.........(5)

 
 

 

2 2

2 32 2 2 2

2x x -y2xy

y x +y x +y

        
.........(6)

we rewrite (1) with the help of  (3) and (4) to get

 
     

2
2 2 2 2 2 2 2

52 2

p 2 B
x -y x 3y -x 2xy 3x -y

x x +y

     
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 
2

32 2

p 2 B x

x x +y

 


 .........(7)

we rewrite (2) with the help of (5) and (6)

 
     

2
2 2 2 2 2 2 2

52 2

p 2 B
x y y y x 2x y x y

y x +y

        

 
 

2 2

42 2

2By x yp

y x +y

 


 .........(8)

Differentiation (7) and (8) with respect to y and x we find
2 2p p

y x x y

 


   
This shows that velocity field satisfies the equation of motion

p p
dp= dx dy

y x

 


 
Now from (7) and (8) we have

 
 
 

2 2

2
3 42 2 2 2

y x yxdx
dp=2ρB dy

x +y x +y

 
 
 
 

      22ρB Mdx Ndy  ..........(9)

 42 2

M 2xy N

y xx +y

 
  

 

Mdx Ndy   is extract

 32 2

xdx
Mdx Ndy 0dy

x +y
    

           32 21
2x x y dx C

2


  

          32 2

1
C

4 x y
  



In view of this (9) becomes
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 
2

122 2

2ρB
p C

4 x +y
  

This is the required expression for pressure.

Example 3 : A sphere is at rest in an infinite mass of homogeneous

liquid of density ρ , the pressure at infinity being π . Show that, if

the radius R of the sphere varies in any manner the pressure at the

surface of the sphere at any time is

22 2

2

1 d R dR
π ρ

2 dt dt

     
   

If R =q(2+cosnt), show that, to prevent cavitation in the fluid, π  must

not be less than 2 23ρa n

Working rules
In order to solve equation of motion we adopt the following

techniques
1) Equation of motion is -

v v 1 p
v F

t x x
  

  
   where F

x


 


, when

velocity has one component

2) Equation of continuity -

(i) x2v =F(t) for spherical symmetry

if   = Constant

(ii) xv =F(t) for cylindrical symmetry

if   = Constant

(iii)  v
0

t x

 
 

 
 general.

3) Fluid is assumed to be at rest at infinity -

x = ,   v = 0,     p =
4) If r be the radius of cavity(or hollow sphere), then

x = r,   v = r


,      p =
5) Equationof the impu;sive action is / /dw ρvdx ρv dγ  .
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Solution :

The equation of motion is

u u 1 p
u 0

t x x
  

  
  

and equation of continuity is 2x u F(t)

So that 
/

2

u F (t)

t x






Hence 
/

2
2

F (t) 1 p
u

x t t 
    

         
 as   is constant.

Integrating w.r.t  x   
/

2
2

F (t) 1 p
u C

x  


    ... (1)

Boundary conditions are -

(i) When x       p       u 0   ... (2)

(ii) When x R      p p      u R


   ... (3)

Also 2 2x u F(t) R R  

 2/ 2F (t) 2R R R R  

Using (2) and (3) in (1)

0 0 C



     and

 
/

2F (t) 1 p p
R C

R 2


  

       

or    2 2 2p 1 1
R 2R R R R

2 R


 

      
 

or  21
p 3 R 2RR

2
       

  ... (4)

Now,    
2 2

2 2 2 2
2

d R d
R 2RR R 2R 2RR R

dt dt
        

Now, (4) becomes 
2 2

2
2

1 d R
p R

2 dt
 

 
   

 
... (5)



43

Second Part :

Let R = a (2 + Cos nt) ... (6)

Let there be no cavitation in the fluid every where on the surface so

that p>0.

Then we have to prove that 2 2π 3ρa n

We have R an sin nt 

2R an cos nt 

We observe that
22RR 3R 

   2 2 2 22a 2 cosnt an cosnt 3a n sin nt   

2 2 2 2a n 4cosnt 2cos nt 3sin nt     
2 2 2a n 4cosnt 2 5sin nt     

Using  this in (4) we have

2 2 21
p a n 4cosnt 2 5sin nt

2
          ... (7)

As cosnt varies from -1 to 1 and so R varies from a to 3a by (6).

Thus the sphere shrinks from R=3a to R = a, and so there is a possibility of

cavitation. Also p is minimum when nt=0 or 2m .

 2 2
min

1
p a n 4 2 0

2
       by (7) 2 2p 3 a n  

2 2 2 2
minp 0 p 0 3 a n 0 3 a n           .

Exercise 4 :

A mass of liquid surrounds a solid sphere of radius a and its outer

surface, which is concentric sphere of radius b, is subject to a given

constant pressure  , no other forces being in action on the liquid. The

solid sphere is suddenly shrinks into a concentric sphere; it is required to

determine the subsequent motion and impulsive action on the sphare.

Solution :

Equation of motion is 
u u 1 p

u
t x x

  
  

  
... (1)
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Equation of continuity is 2x u F(t) ... (2)

Hence, 
/

2
2

F (t) 1 p
u

x t t 
    

         
Integrating  w.r.t. x we get

/
2

2

F (t) 1 p
u C

x  


    ... (3)

Since the liquid contained between two spheres r = a, r=b, so we
suppose that r and R are internal and external radii at any time t and the
corresponding velocities are u and U respectively. Boundary conditions
are -

x γ      u v r      p 0    ... (4)

x R      u R U      p π    ... (5)

 r = a, u = r  so that F(t) = 0 ... (6)

Subjecting (3) to the boundary conditions (4) and (5)

/
2F (t) 1 p

u 0 C
r 2


 


     

/
2F (t) 1

U C
R 2





   

Also, r2u = F(t) = R2U upon subtraction

/ 2
4 4

1 1 1 1 1
F (t) F

R r 2 r R




         
   

... (7)

Since r2u = F(t) = R2U
i.e. r2dr = F(t)dt = R2dR
Multiplying (7) by 2F(t)dt = 2r2dr = 2R2dR, we get

/ 2 2
2 2

1 1 dr dR
2FF dt F 2r dr

R r r R




         
   

2 21 1
d F 2r dr

R r




       

Integrating 2 31 1 2
F r A

R r 3




    
 

Using boundary condition (6) 
32 a

0 A
3




 



45

Hence    2 3 31 1 2
F t r a

R r 3




    
 

   22 3 3R r 2
r u a r

rR 3




    
 



or  3 2 3 3R r 2
r u a r

R 3




    
 

... (8)

R3 - r3 = b3 - a3

Volume of liquid at time t = volume of liquid intially

3 3 3 34 4 4 4
R r b a

3 3 3 3
     

Next to determine the equation of impulsive action.

Equation of impulsive action is

2

F
dw udx dx

x

 

w R

2
0 r

F
dw dx

x


 

        
1 1

F
R r

     
 

        
2 1 1

r u
r R

    
 

        
2 1 1

r u
r R

    
 

The whole impulsive on the surface of the sphere is

2 2 2 1 1
4πr w 4πr ρr u

r R
   
 



2 R r
4πr ρu

R

   
 

... (9)

(8) and (9) are the required equation.
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_________________________________________________________________
2.7 Check your progress  :
_________________________________________________________________

Q 1 : Why is the Euler’s equation of motion called momentum
equation?
Q2 : What would be the shape of Euler’s equation of motion if

graviational force is taken into account?

Hints : Put F g
  in the equation

 q
q. q F p

t
      

 



Q3 : From what principle Euler’s equation of motion is derived?

Q4 : Under what flow condition we can derive Bernnoull’s

equation?

Q5 : What is the Bernnoull’s equation in steady motion?

Q6 : Write down Euler’s equation of motion

 q
q. q F p

t
      

 



in scaler form in terms of following co-ordinate systems

(i) rectangular,

(ii) spherical and

(iii) cylinderical co-ordinate.

Q7 : If fluid flow is q u(y)i what would be the shape of governing

equation. /ẑ is take vertically upwards. The gravity force is acting

downwards.

Hints : take the three components of

  /q
ˆq. q gz p

t
       

 

you will get
 du y p

dt x
 




p
0

y






p
g

z


 

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_________________________________________________________________
2.8 Let us sum up  :
_________________________________________________________________

The principle of conservation of momentum gives the
governing equation of motion. Here in this particular case we
consider the ideal fluid where the viscous effect is not taken
into account. Such a governing equation for fluid flow is
known as Euler’s equation of motion.

If the flow is of potential kind and external forces are
conservative Euler’s equation takes a particular form which
is known as Bernoulli’s equation.

When there is sudden change of velocities at the
boundaries under action of impulsive force the governing
equation takes a special shape. This is known as governing
equation for impulsive motion.

If q  is fluid velocity then the line integral along closed

contour 
C

q.d  is known as circulation round the curve C.

Kelvin’s theorem states that under certain conditions in a
moving fluid circulation may be found to be a constant.



1

BLOCK - 3 : GENERAL THEORY OF IRROTATIONAL MOTION
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3.0 Objective  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this  unit we will be concerned with incompressible

irrotational flow theory. Green’s theorem will be proved

and applicat ions of  this  theorem in potent ial  f low

investigations will be made. Expressions for Kinetic energy

for the  potential flow in various cases will be obtained and

some uniqueness theorems related to acyclic irrotational

motion will be proved.
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3.1 Introduction  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

The law of conservation of circulation introduced in

block 2 gives us an important result.

Let us consider a streamline. We find  that x q  is zero

at some point on it. We draw an arbitrary infinitely small

closed contour to encircle the steamline at that point. In the

course of time contour moves with the fluid but  always

encircles the every point on the steramline. Since

C

q.dr constant (as obtained in Block -2) it  follows that

x q 0   at every point on the streamline.

If the flow is not steady, the same result holds, except

that instead of streamline we must consider the path

described in the course of time by some particular fluid

particles.

If the flow velocity q constant  so that x q 0   on all

streamlines. The concept of potential flow is developed from

such aspect fluid flow.
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
3.2 Potential Flow  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A flow is called irrotional or of the potential kind if

curl q 0

 . In such a flow if we imagine that the liquid at a

point solidifies instantaneously, then this solid will have only

translational velocity. Thus in irrotional motion there will be

no angular velocity. In such a flow the velocity vector can

always be expressed as gradient of a  scalar function   i.e.

q 
 
  . The function  , known as velocity potential, is single

valued if the region of flow is simply connected.

The equation of motion for irrotional flow of an

incompressible fluid can be integrated resulting Bernoulli’s

equation and the equation of continuity will give

2.q 0 . 0 0 
            

  ... (3.1)

Which implies that for an irrotational flow of an

incompressible fluid the velocity potential sat isfies Laplace;s

equation. When the region of flow is finite, equation (2.1) can

be solved if 
n




is prescribed at the boundaries. In fluid flow

n





 i.e. the normal component of the velocity is generally

prescribed at the boundaries. When the fluid is infinite in

extent and a solid boundary is present in it, the equation (3.1)

can be solved uniquely when
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i)    for large values of x.

ii)
n




 is prescribed on the solid surface. The

equation (3.1) can be written in curvilinear
coordinates as

       
2 3 3 1 1 2

1 1 1 2 2 2 3 3 3

h h h h h h
. . . 0

x h x x h x x h x

           
                

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3.3 Green’s Theorem  and its applications :


3.3.1 Green’s Theorem :


If   and  / are single valued continuously differentiable

scalar point functions such that 

  and /


  both are also

continuously differentiable, then
/

/ 2 /

V S V

.  dV ds dV
n

    
         

    ... (3.2)

   
/ / 2

S V

ds dV
n

  
   

 

where s is closed surface bounding a simply connected region,

n is an element of inward normal at a point on S, and V is the

volume enclosed by the surface S.

Proof : Let A


 be a vector field and n


 be a unit vector in the
direction of the inward normal, then Gauss theorem gives

S V

n .A ds AdV
      

  

Putting A a
 
  in the above equation, we get

 
S V

n. a ds . a dV 
           
    
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V V

. . a dV .a dV 
            

    

Putting /a 
 
   in the above equation, we get

       
/ / /

S V V

n. ds . . dv . dV     
                          
         

/
2 / /

S V V

ds . dv . dV
n

    
               

      
/

/ 2 /

V S V

. dV ds . dv
n

    
              

       . (3.3)

Interchanging   and  / is above equation and noting that

/ /. .   
                     

        , we get

/ / / 2

V S V

. dv ds . dv
n

    
             

         ... (3.4)

Equation (3.3) and (3.4) together proves the Green’s theorem.


3.3.2 Application of Green’s Theorem in fluid Dynamics :


We shall now deduce some results of fluid dynamics

from Greens theorem.

(i) Putting  /= constant and taking   to be the
velocity potential of a motion of an incompressible fluid, from
Green’s theorem (3.2) we get,

2

S V

O ds dv
n

 
   

  ... (3.5)

Since we know that in a potential flow of an incompressible

fluid velocity potential satisfies Laplace’s Equation

i.e. 2 0   hence (3.5) yields

S

ds 0
n




 ... (3.6)
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Which means that the total flow of an incompressible fluid

into any closed region at any instant is zero.

(ii) If   and  / be the velocity potentials of two
liquid motions taking place in the region bounded by the

surface S. then 2 2 / 0      and hence Green’ss Theorem

(3.2) yields
/

/

S S

ds ds
n n

   


  

/
/

S S

ds ds
n n

  
            

  ... (3.7)

Since 
/

n





 is the normal velocity inwards and   is the

impulsive pressure at any point on the surface which will

produce velocity potential   from rest hence (3.7) has the

physical meaning that if there be two possible motion

inside the surface S by means of two diffeent impulsive

pressures on the boundary then work done by the first in

acting through the displacement produced by the second

must be equal to the work done by the second in acting

through the displacement produced by the first.

(iii) The case when /   is a velocity potential of a

liquid motion within S then 2 0   and hence Green’s

theorem (3.2)  gives

 2

V S

dv  ds
n

    
 

If q


 be the velocity and   the density of the liquid then

above equation reduces to

 2

V S

1 1
q dv  ds

2 2 n

   


  ... (3.8)
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Equation (3.8) is the statement that the kinetic energy set up
by impulses, in a system  from rest, is the sum of the products
of each impulse and half the velocity of its point of application.
This result also shows that the kinetic energy of a given mass
of a liquid moving  irrotionally depends only on the motion
of its boundaries. If the boundaries are at rest equation (3.8)
gives that velocity should be zero everywhere in the region.
Thus irrotational motion is impossible in a closed region with
fixed boundaries.

(iv) Let S be a closed surface at every point of whose

interior 2 0  . Let P be a point interior to S and let r be the

distance of the point P from the element of area ds. Draw a

sphere with centre P and radius R. The region   should

lie entirely within S as shown in the figure

If we take / 1

r
   the it can easily be verified that 2 / 0  .

Further, if   and /  satisfy 2 2 /0      then from

Green’s theorem (3.2) we get,
/

/

V S

. dV  ds
n

  
           

    

and
/ /

V S

. dV  ds
n

  
           

    

Since / /. .   
                     

       
 hence the above two

equations give
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/
/

S

 ds 0
n n

  
  

    
 ... (3.9)

Here S stands for the total surface.

For the case when   is a velocity potential and / 1

r
 

the equation (3.9) yields,

      
S

1 1 1 1
 ds  d 0

n r r n R R R R

  


                              
   .(3.10)

Since the direction of the normal on  the sphere is that of r

put in the  opposite sense hence dn has been replaced by

(-dR).

The terms 
2

V V

1 1
d .Rd dV dV 0

R R R R

   
   

 

                          

If we take R so small that  is constant in the space
and its value is p  then the term.

2

1 1
d d

R R R
 

 

               

2

1
. .P d
R




  

2

1
. .P R

  

2
2

1
. .4P R
R

  

4 P 

Taking the limit of the equation (3.10) as R0, we get,

1 1 1
 ds

4P

S n r r n

 


           
 . . . (3.11)
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In the case when S is a sphere of radius r, the equation (3.11)

gives

1 1 1
 ds

4P

S r r r r

 


           


2

1 1
 ds

4 4P

S S

ds
r r r

 
 


 

  . . . (3.12)

Applying Gauss theorem to the second integral, we get,

2

V

ˆ. .( ) dv = dV=0
S S V

ds rds
r

   
     

   
  

Hence from equation (3.12), the value of pΦ  is given by

2

1

4P

S

ds
r

 


  ... (3.13)

The equation (3.13)  is the statement that the mean

value of   over any spherical surface, throughout whose

interior 2  =0 is equal to the value of   at the centre of the

sphere.

From equation (3.13) it can also be deduced that 
cannot be a maximum or minimum in the interior or any region

throughout which 2  =0. For if  p be a maximum value of

  at a point P then it would be greater than the value of   at

all points of a sufficiently small sphere centered at P, which

contradicts the above theorem.

(v) In the case when the region of flow is outside a solid

body of surface S we take a point P in the liquid outside the

solid surface S and consider a sphere of large radius R with

P as the centre in which the region S is enclosed as shown in

the figure.
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Taking the space between S and  and using equation
(3.11), we get the value of  p as

   p

S

1 1 1 1
4  ds  d

n r r n R R R R

   


                             
   ..(3.14)

To get the value of the second term on the right hand side

of above equation, we apply Gauss theorem on 

  by taking

the region of integration as the space between  S and  and get

2

S V

 ds  d dV
n n

  


 
    

   

S

 ds  d 0
n n

 



 
   

    2 0 

Since the flow across S is zero therefore

S

 ds 0
n




  and hence the above equation gives

 d 0
R






 

 ... (3.15)

Writing dS=R2dw , the above equation becomes

 dω 0
R










 dω 0
R





 

 

 dω 4 c 


  ... (3.16)
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The constant c is independent of R, the constant c is

independent of the point P. we displace the point by a small

distance x  keeping R constant. Then the equation (3.1 6) gives

c
 dω 4

x x

 


 


  ... (3.17)

Since the liquid is at rest at infinity,  0
x





 on   when

R   . Hence for large value of R, (3.17) shows that 
c

 0
x





.

Thus we see that C is an absolute constant.

Using the equations (3.15) and (3.16), the value of p  is given

by (3.14) as

 p

1 1
4 c  ds

n r r n

            
... (3.18)

If r  then 
1

r
 as well as 

1

n r

  
   

 tend to zero. Hence

from equation (3.18) it can be interpreted that p C   as r

We have given above some deductions from Green’s

theorem, but we remark that many of these are capable of very

simple independent proof.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3.4 Kinetic energy of a Liquid Extending to infinity :


It has been given earlier that the kinetic energy of liquid
contained in a closed surface S is

2

V

1 1
T q dV  dS

2 2 nS

     
 

The case when the liquid is at rest at infinity and is
bounded internally by a solid surface S, we consider the liquid
in the space between this soild and sphere of  a large radius
and then the Kinetic energy is given by
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1 1
T  dS  d

2 n 2 nS

    


 
  

   ... (3.19)

There is no flow in the region across S, hence from the equation
of continuity, we get,

 d 0
n





 

 ... (3.20)

Multiplying (3.20) by 1
2 C , the the limiting value of 

at infinity and adding it to the equation (3.19), we get,

 1 1
T  dS c  d

2 n 2 nS

    


 
    

  

The second Integral tends to zero as the radius of the sphere S
tends to infinity, hence the kinetic energy, in this case is

1
T  dS

2 nS

   
 ... (3.21)

This shows that irrotational motion is impossible in a

liquid which is rest at infinity and is bounded internally by

fixed rigid walls. It can also be  interpreted from equation (3.21)

that the case in which liquid is infinite and solids are moving

in it such that the motion is irrotational, the motion will stop

immediately if the solids are brought to rest.


3.5 Kelvin’s minimum energy theorem :


 The irrotational motion of a liquid occupying a simply

connected region has less kinetic energy than any other motion

consistent with the same normal velocity of the boundary.

Proof : Let T1 be the kinetic energy and q


1’, be the fluid

velocity of the actual irrotational motion with a velocity

potential  . Then
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
 

1q ... (3.22)

Let T2 be the kinetic energy and 2q


 be the fluid velocity

of any other possible state of motion consistent with the same

normal velocity of the boundary S.

The equation of continuity, for the above two motion, gives




.q


1 = 0 and 


.q


2  = 0 ... (3.23)

Let n


 denote the unit normal vector at a point P on S.

Then, since the boundary has the same normal velocity in both

motions, we have

1 2n .q n .q
   



Now,
2 2

1 1 1

V V

1 1
T q dV q dV

2 2
 



  

and 2 2
2 2 2

V V

1 1
T q dV q dV

2 2
 



  
therefore,

2 2
2 1 2 1

V

1
T T q q dV

2


  
   

 


2

1 2 1 2 1

V

1
2q . q q q q dV

2


               
    



(note  carefully this step)
2

1 2 1 2 1

V V

1
q . q q dV q q dV

2
 

            
    

2

2 1 2 1 2 1

V V

1
T T . q q dV q q dV

2
  

                    
        .. (3.25)

Since we know that

2 1 2 1 2 1. q q . q q . q q  
                                       
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  2 1. q q
          

   
     (by using 3.23)

Therefore 2 1 2 1

V V

. q q dV . q q dV 
                            

         2 1

V

q q .nds
     

 
          = 0 ... (3.26)

(by using (3.24)
Using (3.26) in (3.25), we get

2

2 1 2 1

V

1
T T q q dV

2


      
  ... (3.27)

Since the R.H.S of (3.27) is non-negative, hence

2 1T T 0 

2 1 1 2T T T T   

This proves the theorem.

_______________________________________________________________________________________
3.6 Uniqueness Theorems :
_______________________________________________________________________________________

We shall now prove some therorems concerning

acyclic motion (the motion in which the velocity potential

is single-valued is called acyclic) of a liquid by making use

of the following equivalence of the expressions for the

kinetic energy,

2

V V

1 1
T q dV  dS

2 2 n

     
  ... (3.28)

Where V is the volume of the liquid ecnlosed by the boundary

surface S.

Theorem 1. There can not be two different forms of acyclic

irrotational motion of a confined mass of liquid in which the

boundaries have prescribed velocities.
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Proof : If possible, let  1 and  2 be the velocity potentials of

two different acyclic motions subject to the condition

1 2

n n

  


 
 at each point of the boundary S. .... (3.29)

Since  1 and  2 are velocity potentials

2 2
1 2     at each point of V. .... (3.30)

Let 1 2   

Then  2 2 2 2
1 2 1 2        

2 0   at each point of V. .... (3.31)

[by using (3.30)]

Hence   is a solution of Lapace’s equation and so it

represents irrotational motion of liquid in which

  21
1 2n n n n

     
   

   

i.e. 0
n





 at each point of S ... (3.32)

[by using (3.29)]

The Kinetic energy for the liquid with   =  1----   2 will

be given by

V

1
T  dS

2 n

   


which will be zero because of the boundary conditon (3.32)

Hence   T  = 0

2

S

1
q dV 0

2
  [by using (3.28)]

2

S

q dV 0 
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2q 0   (at each point of V)

q 0 q 0   


0  


constant 

1 2 constant   

Since the motion is acyclic therefore 1  and 2  are single

valued. Further the constant is of no significance hence above

equation reveals that the two motions are essential the same.

Theorem 2 : If given impulsive pressures are applied to the

boundaries of  a confiend mass of loquid at rest, the resulting

motion, if a cyclic and irrotational will be uniquey determined.

Proof : If possible,  1  and 2  be velocity potentials of two

diferent irotational motion. Let the impulsive pressure which

would start the first motion is 1 ’ that which would start the

second is 2  . It is given that

 1 2   at each point of boundary S. ... (3.33)

Since  1 and  2 are velocity potentials of irrotational motions,

therefore,

2 2
1 20      at each point of V. ... (3.34)

Let 1 2   

Then  1 2 1 2        

0   at each point of S ... (3.35)

[by making use of (3.33)]

Further  2 2 2 2
1 2 1 2        

2 0   at each point of V. ... (3.36)

[by making use of (3.34)]
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Hence   is a solution of Laplace’s equation and so it

represents irrotational motion of a liquid.

The Kinetic energy for the liquid with 1 2     will be

given by

 
S S

1 1
T  dS  dS

2 n 2 n

    
   

  

which will be zero because of the boundary condition (3.35)

Hence T = 0

Now proceeding in the same way as in the proof of

Theorem I, given above, we can conclude that the two motions

are essentially the same.

Theorem 3 : Acyclic irrotational motion is impossible in a

liquid bounded entirely by fixed rigid walls.

Proof : Since 0
n





 at every point of the boundary

therefore, the Kinetic energy

S

1
T  dS

2 n

   


T 0  ( 0
n


 


 everywhere on the wall)

2

V

1
q dV 0

2
  

2

V

q dV 0 

Since q2 can not be negative, therefore

q = 0 everywhere in V

and hence we conclude that the liquid is at rest.
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_______________________________________________________________________________________
3.7 Check your Progress  :
_______________________________________________________________________________________

1. Define irrotational motion and prove that under certain

conditions the motion of a frictionless liquid, if once

irrotational, is always so. Prove that this theorem

remains true when each particle is acted on by a

resistance varying as the velocity.

2. If the velocity Potential  is  constant over the boundary

of any simply connected region occupied by liquid in

irrotational motion, prove that   has the same constant

value  throughout the interior.

3. If the normal velocity is zero at every point of the

boundary occupying  a simply connected region, and

moving irrotationally then prove that the velocity

potential is constant throughout the interior of that

region.

4. A space is bounded by an ideal fixed surface S drawn in

a homogeneous incompressible fluid satisfying the

conditions for the continued existence of a velocity

potential    under conservative forces. Prove that the

rate per unit time at which energy flows  across S into

the space bounded by S is

S

.  dS.
t n

    


 

Here   is the density and n and element of the

normal to ds drawn into the space considered.

5. If q is the resultant velocity at any point of a fluid which

is moving irrotationally in two dimension, prove that

22
2q q

q q
x y

            
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_______________________________________________________________________________________
3.8 Points to Remember :
_______________________________________________________________________________________

 The necessary and sufficient condition for a flow
field to be irrotational is  x q 0 

 

 In potential flow of an incompressible fluid, velocity
potential satisfies Laplace’s equation.

 In Potential flow of an incompressible fluid the
expression for kinetic energy T is given by

S

1
T  dS

2 n

   


 The motion in which the velocity potential is
single-valued is called acyclic motion whereas the
motion in which the velocity potential is not
single valued is called cyclic.

 A region in which every circuit is reducible is
known as simply connected.
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BLOCK - 4

TWO DIMENSIONAL MOTION

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.0 Objective  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In this block you will be introduced with two
dimensional motion of incompressible fluids. The concept of
images will be introduced here. Stream function and complex
velocity potential will be  introduced and applications of these
functions will be discussed in the context of some special two
dimensional motions. Some important theorems, viz. Milne
Thomson circle theorem, Blasius theorem will be proved. The
Blasius theorem to be discussed in this block deals with the
estimation of magnitude of the resultant force experienced by
a fixed cylinder in presence of circulation. Some of the two-
dimensional flow examples will also be introduced to you in
this block.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.1 Introduction  :_________________________________________________________________________________________________________________________________________________________________________________________________________________________________

If a fluid moves in such a way that at any given instant the
flow pattern in a certain plane is the same as that in all other
parallel planes within the fluid then the flow is said be two
dimensional. If we take any one of parallel planes to be the plane
z=0, then at any point in the fluid have Cartesian coordinates
(x,y,z), all physical quantities (velocity, pressure, Temperature,
density etc.) associated with the fluid are independent of z. Thus
u,v are functions of x,y and t for such a motion.

The term “ Two-dimensional motion” should not be
misinterpreted with that motion which is taking place in a two-
dimensional space because fluid motion always takes place
in three dimension.
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.2 Two Dimensional Motion
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

A thorough discussion is presented here. let P (x,y,o) be

any point in the z plane. Draw PQ perpendicular to the z plane.

Then points on the line PQ are said to correspond to the point P.

Take any plane (say, at a distance z from z plane) in the fluid parallel

to z plane and meeting PQ in R.

Then, if the velocity at this point P

is q
  in the z plane in a directon 

with OY, the velocity at R (x,y,z) is

equal in magnitude and parallel

in direction to the velocity at the

point P. The velocity at

corresponding points is then a

function of x,y and t, but not of z.

In order to maintain reality we use to suppose the fluid

in two dimensional motion to be confined between two planes

parallel to the plane of motion and at unit distance apart. Thus

while discussing the flow of a fluid past a cylinder in a two

dimensional motion in planes perpendicular to the axis of the

cylinder, we restrict our attention to a unit length of cylinder

confined between the said planes instead of taking care over

the cylinder of infinite length.

Thus in the case of a circular cylinder moving in two

dimensions the diagram will show a circle, the cross section

of the cylinder. Accordingly, when we speak of the flow across

a curve in the z plane, we really mean the flow across unit

length of  the cylinder whose cross section in the z plane is

that curve.
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.3 Stream Function
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

In two dimensional motion, the velocity is a function
of x, y and t only and therefore, the differential equation of
stream lines becomes

dx dy

u v
  or, vdx - udy = 0 (4.1)

For an incompressible fluid, the equation of continuity
in two dimensional motion is

0
u v

x y

 
 

  (4.2)

The condition for the equation (4.1) to be exact is

( )
v v

u
y x

 
 

 

which is th esame as (4.2). Hence, vdx - udy is an exact
differential, say d  i.e.,

vdx - udy = d (4.3)

But we know that d dx dy
x y

   
 
 

(4.4)

Comparing (4.3) and (4.4) we get

and u v
y x

  
  

  (4.5)

The solution for equation (4.1) is, therefore,  =constant.
This function   is called the stream function or current function.
It should be noted that the stream function always exists for all
types of two dimensional motions-rotational or irrotational,
provided the fluid is incompressible and the flow is continuous.
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.3.1 Properties of Stream Function
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

(i)  Stream function is constant along a stream line.

Stream line is given by 
dx du

u v


or vdx - udy = 0

But u = - ,
y




    v = 
x




 , hence we have

x




 dx + ,
y




dy = 0 or d = 0

Hence  = constant (4.6)

(ii)  The difference of the values of stream function  at
two point represents the flux of the fluid across andy curve
joining the two points.

(The term flux means the rate of flow)
Let ds be an element of a curve AB and  , the inclination

of the tanjent (at a point P of arc ds) to x-axis. Flux of the fluid
across AB from left to right is

B

A
 (flux across and element ds of AB per unit time

perunit density)

( sin cos )
B

A

u v ds  

( ) ds
B

A

dy dx
u v
ds ds

 

 d
B

A

dy x
y dx

   
    

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B

A B

A

d    

where ψ
A and ψ

B are respectively the values of ψ at the points

A and B respectively.

(iii)  Conditions to be satisfied by ψ at a boundary :

(a)  At a fixed boundary : As there is no flow across a fixed
boundary hence the fixed boundary is a stream line and since ψ  is
constant along a stream line hence ψ  is constant at a fixed boundary.

(b)  At a moving

boundary : Let motion of the
boundary  be defined by U,V
and ω  where U and V are
translational velocity components
in the directions of x and y
respectively and ω  be the
angular velocity.

The component of the velocity at any point P whose

cartesian coordinates are (x,y) an polar coordinates are (r, θ )
parallel to the axes of coordinates, are -

U - r ω  sin θ  and V+ r ω  cos θ

or, U - ω y  and V+ ω x

Boundary condition at the point P is that the normal

velocity component of the boundary is equal to the normal

velocity component of the fluid particle situated at that point.

That is,

(U- ω y) sin - (V+ ω x) cos = u sin - vcos

where u, v are the components of fluid velocity at the point P.

or ( ) ( )
dy dx dy dx

U y V x
ds ds y ds x ds

    
     

 
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or - - ( )
dy dx dy dx

U V y x
ds ds ds ds s

 
  



In the case when the motion of the boundary is uniform,

U,V and   are constants, hence above equation gives -

2 21   ( )  Constant2Vx Uy x y      (4.7)

This is the condition to be satisfied by   in case of a

boundary which is moving uniformly.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.4 Irrotational Motion in Two Dimensions
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

When the motion is irrotational, curl q = 0
  which gives

w
0,

y

v

z

 
 

  (4.8)

0,
u w

z x

 
 

 
(4.9)

0,
v u

x y

 
 

  (4.10)

In two-dimensional motion, (4.8) and (4.9) are

automatically zero. Substituting for u and v is terms fo stream

function, (4.10) gives -

2 2

2 2
0,

x y

  
 

  (4.11)

which shows that the stream function satisfied Laplace’s equation.

Also, in this case, since velocity potential exists we have

u
x y

  
   

  (4.12)

v
y x

  
  

  (4.13)
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Hence the equation of continuity,

0,
u v

x y

 
 

    gives

2 2

2 2
0,

x y

  
 

  (4.14)

Which shows that   also satisfies Laplace’s equation.

From (4.12) and (4.13) it can be easily seen that -

. . 0uv uv
x x y y

      
    

   

Hence the family of courves  (x,y)=constant and  (x,y)=constant

cut orthogonally at all their points of intersection.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.5 Complex potential and Velocity
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Let w = i be taken as a function of x+iy, i.e. of z.

Thus, suppose that

w=f(z)

or ( )i f x iy    (4.15)

Differentiating (4.15) with respect  to x and y

respectively, we get

 /ψ
x iy

x x
i f

 
  

 

and  /i i f x iy
y y

  
  

 

The above two relation give

i i i
y y x x

              
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Equating real and imaginary parts, we get

ψ

x y

 


 
 and 

ψ

y x

 


 
(4.16)

which are Cauchy-Riemann equations. Thus w is an analytic

function of z and is  known  as the complex potential.

Conversly, if w is an analytic function of z, then its real

part is the velocity potential and imaginary part is the stream

function of an irrotational two dimensional motion.

Again, differentiating the relation,

 w iψ f z  

with respect to x, we get

 /ψ z
z

x x x
i f

  
 

  

or,  /u v zi f  

or
dw

u v
dz

i  

Hence
dw

u v
dz

i  

or 2 2dw dw dw
u v =

dz dz dz
        
   

(4.17)

Thus dw

dz
 
 
 

 represents the velocity of any point in an

irrotational two dimensional motion.

The points where velocity is zero are called stagnation

points. thus, for stagnation points,

dw
0

dz
 (4.18)
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.5.1 Cauchy-Riemann Equation is polar form
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Since we shall very often need the C.R. equations in

polar form it is desirable to derive it here.

Let,    iw iψ ref z f    

Differentiating above equation w.r.t. θ , we get

 / i iψ
re e

r r
i f   

 
 

Differentiating w.r.t. θ , we get

 / i iψ
re r i ei f

 
 

 
 

 

Since w is an analytic function, it must possess a unique

derivative and so,

ψ ψ
r

r r
i i i

           
 

 

or
ψ ψ

r r
r r

i i
   

  
   
 

 

Equating real and imaginary parts, we get

1 ψ

r r r

 


 
 and 

1 ψ

r

 
 

 

  (4.19)

which are the polar form of C.R. equations.

_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.5.2 Sources, Sinks and Doublets
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

If the two dimensional motion of a liquid consists of
outward radial flow from a point, symmentrical in all directions
in the reference plane then the point is called a simple source. So
a source in two dimensions will be a line source parallel to z-
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axis. If the flow across any small closed curve surrounding the
source be 2m then m is called the strength of the source.

A source  is  thus a  point  at  which f luid  is
continuously created and distributed. Since the velocity
near a source is very large, Bernoulli’s theorem demands
a large negative pressure. This fact alone shows that a
source can have no actual existence and is a purely abstract
concept. This concept is useful in discussing the fluid
motion in  many situations.

A sink is a negative source. Thus a sink is a  point of inward
flow at which fluid is absorbed or annihilated continuously.

______________________________________________________________________________________________________________________________________________
4.5.3  Complex potential due to a source at origin :
______________________________________________________________________________________________________________________________________________

If  is the velocity potential due to a source at origin,

then

2 2m r
r

    

 

m log r   (4.20)

Since
1

r r r

  


 
 hence m   (4.21)

These values of and give complex potential

w i  

or   log   log  iw m r im m re     

 w m log z   (4.22)

I f  the sou rce i s at  the poin t  z0, then by a change of origin

 0w m log z z  

Similarly the complex potential for a sink of strength

-m is given by
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w m log z (4.23)

The complex potential for a system of sources of

strength m1, m2,........, mr at a1,a2,......,ar and sinks of strength

M1, M2,.....,Ms at A1,A2,.....,As is given by

 
 

 

r m

i
i

s M

j
j

z a
w z  log 

z A

i

j

 
 

  (4.24)

A doublet is defined as a combination of a source +m

and a sink -m at a small distance s apart such that the product

ms is a finite. If ms = = finit where m  ,s 0  then  is

called strength of the doublet and s is called the axis of the

doublet and its direction is taken from sink to source.

L et   a sou rce of  st r ength  m  be si tuated  at  A  (aei) and a

sink of strength -m be situated at B(-aei). suppose that A and

B are very close to each other so that a is small. Then the

complex potential w for this sysem is given by

     log   log  i iw m z ae m z ae     

      log  1  log  1
i iae ae

m
z z

    
       

    

 

     
3 3

3

2 2
...

i imae ma e

z z
  

 

Let 2ma = . Then

2 3

3
....

i ie a e
w

z z
  

  

Now  let a 0 ,  remaining constant so that m . Then

when A and B coincide, we get

ie
w

Z



(4.25)
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_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
4.5.4 Method of Images
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Consider a mass of liquid infinite in extent. suppose there
exists two portions P1 and P2 of the liquid each having its own
proper motion. Suppose further that the two portions have a
continuous surface of separation S such that in the motion of the
two proportion neither a particle of P1 nor a particle P2 traverses
S. We say, in such cases, that the motion of one of the portions is
the image of the other with respect to S. Under  these circumstances,
it is possible to suppress completely one of the two portions, say
P2, without affecting the motion of P1 in any way, provided that
the surface S is replaced by a material partition.

The method of images is used to determine the complex

potential due to sources, sinks and doublets in presence of rigid

boundaries. Suppose we wish to determine the flow field in

one side of a rigid boundary due to sources, sinks and doublets

lying in the same side of the boundary. To this end we assume

the existence of some hypothetical image sources, sinks and

doublets on the opposite side of the boundary in such a manner

that the boundary behaves as a stream line or surface.

Thus the given system of sources, sinks and doublets
together with the hypothetical one will be equivalent to the
given sources, sinks and doublets and the rigid boundaries.

Let us find the Images in some special cases.

(i) Image of a sources with respect to a line :

Consider a source m at A(a,o) on x-axis. Suppose we

require the image of this source with respect to y-axis. We

take an equal source at A
/
(-a,0). Let P be any point on y-axis

such that AP = A
/
P = r. Then the velocity at P due to source A

/

is m/r along A
/
P. Let PL be perpendicular to y-axis.
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Then resultant velocity at P due to sources at A and A
/
 along PL

   / cos / cos 0m r m r   

showing that there will be no flow across y-axis. Hence by
definition, the image of a simple source with respect to a line
in two dimensions is an equal source equidistant from the
line opposite to the source.

(ii) Image of a source with respect to a circle :

Let m be the strength of

the source at the point A and let

B be the inverse point of A with

respect to the circle with centre

O. Consider a source of strength

m at B and an equal sink at O.

Then for this arrangement of

sources and sink the stream

function  at any point P on the

circle, is given by

= -m -m + m

or = -m( +  -  

Now, since B is the inverse point of A, we have

OA.OB = OP2

or
OA OP

OP OB

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Hence s OPA and OBP as similar so that

OA OP AP

OP OB PB
 

and OPA OBP 

OPB OAP 
and OPA OBP 

OPB OAP 

i.e. 2 1     

1 2     

Therefore, equation (4.26) becomes

= -m = constant

This shows that is constant upon the circle. The circle is,

therefore, a stream line and this verifies that for this arrangement

of sources and sink, there is now flow across the boundary.

Hence the image of a source with regard to a cricle is

an equal source at the inverse point together an equal sink at

the centre of the circle.

_____________________________________________________________________________________________________
4.5.5 Miline-Thomson circle theorem_____________________________________________________________________________________________________

Let there be an irrotational two-dimensional motion of

an incompressible a inviscid fluid in the xy plane. Let there

be no rigid boundaries and let the complex potential of the

flow be f(z), where the singularities of f(z) are all at a distance

greater than ‘a’ from the origin. If a circular cylinder of cross

section  z  = a is introduced into the fluid and held fixed then

the complex potential of the new motion becomes.

 
2a

w f z f
z

 
   

 
(4.27)
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(Let f(z) be a function of a complex variable then its

conjugate is  f z .

Now, f(z) = u(z) + iv(z)

     f z u z iv z  

     f z u z iv z  

     f z u z iv z  

from the above expressions we see that

   f z f z

This will help in understanding the proof.

Proof : All the singularities of f(z) are in the region |z|>a,

hence all the singularities of f (a2/z) lie in the region |z|<a.

Hence the singularities of f
----

(a2/z) also lie in |z|<a. Thus f(z)

and f(z) + f
----

(a2/z) both have the same singularities in the region

|z|>a and so both functions describe the same

hydrodynamical distribution in the region |z|>a.

Moreover, on the cylinder |z| =a, we take z = aei and

so

w= f(z) + f
----

(a2/z)= f(aei)+ f
----

(aei)

       i if ae f ae  

Thus  on the circle |z|=a, w is the sum of a complex

quantity and its complex conjugate and is therefore a real

number. Hence = Im(z) = 0 on |z| = a. This shows that

the circular  boundary is a stream line across which no

fluid flows. Hence |z| = a is a possible boundary for the

new flow and w= f (z) +  f
----

(a2/z)  is the  appropriate complex

velocity potential for the new flow.
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_____________________________________________________________________________________________________
4.6 Flows Represented by Functions of a complex variable
_____________________________________________________________________________________________________

It is well known that if w= f(z) is an analytic function

then w is the complex velocity potential of some inviscid

incompressible irrotational motion. The real and imaginary

parts of this analytic function w represent the velocity potential

and the stream function of the motion. We shall now take some

analytic functions and discuss the nature of the flow

represented by them.

     (i)  w Uz U>0  where U is non-zero constant

 ψ U x yi i   

Ux   and ψ Uy

U, 0
x y

  
     

 

u U,    v 0  

Further,  = constant y = constant

w =Uz
dw

U
dx

 

Hence w=Uz being an analytic function, represents an

inviscid incompressible irrotational motion and the motion

is uniform with a velocity U parallel to the negative direction

of the x- axis.

(ii) w = Uze-i

   cos sini U x iy i       

 cos sinU x y    

And  cos sinU y x   

cos ,     sinU U
x y

 
     
 
  
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 = constant y = tanx + constant

dw
U

dz


Hence the complex potential w = Uze-i represents an

inviscid incompressible irrotational uniform motion in which

stream line are inclined at an angle  with x- axis. The

magnitude of the flow is U.

(iii)
2Ua

w
z



 
2 2

cos sin
i

Ua Ua
w i

re r
     

2 2

2 2 2 2
cos sin

Ua Ua y

x y x y


  

 
  

2 2

2 2 2 2
,

Ua x Ua y

x y x y


  

 
 

 = constant

2 2x y 2Ay 0   

The stream lines  = constant are circles of radius a

touching the x- axis at origin.

The value of 
1

cos
r a

U
r 

    
 


The normal velocity of the fluid at r = a is Ucos. Now

if the circle moves with velocity U in the x direction then the

normal velocity at r=a will be Ucos.

Hence 
2Ua

W
z

 represents the complex potential for the

flow produced by the motion of a circular cylinder in the

direction of x.
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(iv)
2a

w U z
z

 
  

 

We know that the complex potential w = Uz represents a

uniform flow with velocity U parallel to x axis in the direction of

x-axis of an inviscid incompressible fluid. Now if a cylinder |z|= a

is introduced into the flow and held fixed then the new complex

potential for the modified flow (by using Milne-Thomson circle

theorem) will be given by w= Uz+U (a2/z) which is same as the

complex potential given in the problem. Hence we can say that

the complex potential w=U(z+a2/z) represents the flow in

presence of a cylinder |z| = a. The velocity at a large distance

from the cylinder is parallel to x -axis and is of magnitude U.

(v) w = Az2

w= Az2 gives = A(x2-y2), =2Axy

In this  case stream lines

are rectangular hyprebolas

having the axes of reference

as asymtotes. Any two stream

lines can be replaced by solid

boundaries  and this will

represent the motion between

them.   If axes of reference

becomes the solid boundary lines, this stream function and

velocity potential give the flow round a rectrangular corner.
_____________________________________________________________________________________________________
4.7 Blasius Theorem
_____________________________________________________________________________________________________

An incompressible fluid moves steadily and irrotationally

under no external forces parallel to the z-plane past a fixed

cylinder whose cross section in that plane is bounded by a closed
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curve C. The complex potential for the flow is w. then the action

of the fluid pressure on the cylinder is equivalent to a force per

unit length having components [X, Y] and a couple per unit length

of moment M, where

2 2

 ;    Re
2 2C C

dw dw
Y iX dz M z

dz dz

             
     
 

 
   (4.28)

Proof : Consider and element of arc ds surrounding if a point

P(x,y) of the fixed cylinder. The tangent at P makes an angle

 with the x-axis. The thrust at P acts inward along  the

normal at P, its components being

    0 0 cos 90 ,  sin 90pds pds  

i.e.  sin ,     cospds pds  

Hence   sin
c c

X pds pdy    

  cos
c c

Y pds pdx  

Moment of the thrust pds about O is

    sin .  cos .
c

M pds y pds x       

 
c

p xdx ydy 

  Re
c

p zd z  (4.29)

Also,

 
c

Y iX p dx idy  

c

pdz  (4.30)

In steady flow, from-Bernoulli’s equation
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 2 2
02

P u v P  


(4.31)

and from the square of the magnitude of the complex conjugate

velocity

2
2 2.

dw dw dw
u v

dz dz d z
  

it follows that 0 2

dw dw
p p

dz d z



(4.32)

Therefore, we write for the force

 
2c

dw
Y iX dw

dz
  


(4.33)

because the closed integral over the constant pressure p0

vanishes. Since the contour of the body is a curve =constant,

we have

dw d dw  ,

and hence from (4.33) we get

2

2 c

dw
Y iX z dz

dz
     
 


(4.34)

In a similar manner, we obtain from (4.29)

2

2e

c

dw
M R z dz

dz

      
   




(4.35)

Note : The Integration can also be carried out along any

arbitrary closed curve enclosing the body, as long as there

are no singularities between the contour of the body and the

integration curve.

87



_____________________________________________________________________________________________________
4.8 Motion of Cylinders
_____________________________________________________________________________________________________

Consider a two dimensional irrotational motion

produced by motion of a cylinder of radius a in an infinite

mass of liquid which is at rest at infinity. For simplicity, we

suppose the cylinder to be of unit length and the liquid and

the cylinder to be confined between two smooth parallel

planes at right angles to the axis of the cylinder.

Since the m ot ion i s i r r otat i onal , the v eloci ty  potent ial  

exists and satisfies Laplaces equation

2
0  , i.e. 

2 2

2 2 2

1 1
0

r r r r

  
  

  
  


 everywhere   (4.36)

Also since the liquid is at rest at infinity, the velocity

components

1
0, 0

r r r

 
   
 
 

 at infinity     (4.37)

At the boundary of the moving cylinder, the normal

component of the velocity of the liquid must be equal to the

normal component of the velocity of the cylinder.

i.e. cos
r a

U
r 


 

      (4.38)

where U is the velocity of the circular cylinder in the

direction of the x-axis.
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The boundary condition (4.38) suggests that  must be

of the form F(r)cos.

On this ground we assume that

= F (r) cos (4.39)

is a solution of (4.36). Substituting this form of in (4.36), we

get
2

2 2

1
0

d F dF F

dr r dr r
   (4.40)

Assuming F(r)=Arm above equation gives

m(m-1) + m-1 = 0

  m=1, -1

Hence,  ,   cos
B

r Ar
r

   
 

   (4.41)

using boundary conditions (4.37) and (4.38) we get
2

cos
Ua

r
  (4.42)

This gives 
2

sin
Ua

r
   (4.43)

And hence    
2Ua

w z i
r

   

In the case when the cylinder is at rest and fluid is

moving past the cylinder we can obtain the solution of (4.36)

in a similar way as

2

cos
a

U r
r

 
  

 
  (4.44)

2

sin
a

U r
r

 
  

 
  (4.45)

2a
w U z

z

 
  

 
(4.46)
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_____________________________________________________________________________________________________
4.8.1 Circulation about a Fixed Circular Cylinder :
_____________________________________________________________________________________________________

The space occupied by liquid in presence of a circular

cylinder  of radius a is a doubly connected region, hence a

cyclic motion is possible. Let  be the velocity potential for a

cyclic motion with a constant circulation K about the cylinder

the cylinder, then for any radius r, we have

1
.2 r K

r

    

 
 (4.47)

where 
1

r

   




 is the velocity in the direction of . On

integration of (4.47), we get

2

K
 


 (4.48)

the constant of integration is taken to be zero, since there is no

loss of generality in it. the conjugate complex of gives  as

log   
2

K
r

 (4.49)

and hence the complex potential is given by

 w z i  

or   log   
2

ik
w z z

 (4.50)

_____________________________________________________________________________________________________
4.8.2 Forces on a fixed circular cylinder with circulation
_____________________________________________________________________________________________________

We have seen in section 4.8 that the complex potential

in the case when a circular cylinder of radius a is fixed in a

stream of uniform velocity U is given by
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2Ua
Uz

z


and in section 4.8.1 that the complex potential due to a

circulation K about the cylinder is given by

log   
2

iK
z



Hence the complex potential w(z), for the combined

motion is given by

 
2

log  
2

a iK
w z U z z

z

 
   

   (4.51)

Now,
2

2
1

2

dw a iK
U

dz z z

 
   

  

 
22 2 2 2

2
2 2 2 2

1 1
4

dw a K iKU a
U F z

dz z z z z

              
       , say

If X,Y be the components of thrust on the cylinder, then,by

Blasius theorem , we have

2

| |

1

2 z a

dw
X iY i dz

dz

    
  (4.52)

the poles of the function F(z) inside |z|=a is at z=0 and the

residue there is 
iKU


Hence, by Cauchy’s residue theorem, we have

 
2

| | | |

2 . 2
z a z a

dw iKU
dz F z dz i KU

dz 

      
   



Therefore, equation (3.52) gives

 1
2

2
X iY i KU  

91



0, and KUx y    (4.53)

which means that the cylinder experiences and upward

lift. This lifting effect produced by the circulation is called

the Magnus effect.

When  circulation is not present i.e. K = 0, the force on

the cylinder is zero. This means that when a circular cylinder

is fixed in uniform stream it does not experience any resistance,

but experiments show that it is not so. This is known as D
/

.

Alembert Paradox. The character of the motion in the

neighbourhood of the cylinder is completely changed when

even a small amount of viscosity is present in the fluid and

then the cylinder experiences resistence.

_____________________________________________________________________________________________________
4.9 Check your progress
_____________________________________________________________________________________________________

Q.1. What do you mean by two dimensional flow?

Q.2. What is stream function? Is it a harmonic function?

Q.3. State the physical significance of steam function.

Q.4. State the Milne - Thomeson Circle theorem?

Q.5. What is Blasius Theorem?

Q.6 Prove that the two-dimensional irrotational motion of

a liquid bounded by the lines y=0, y=2a due to a source

at the point (0,a) is given by the complex velocity potential

W logcosh
2

z
m

a

    
 

where m is the strength of the source.

Q.7. Verify that W K log
z ia

i
z ia

    
 is the complex potential

of a steady flow of a liquid about a circular cylinder,
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the plane y=0 being a rigid boundary. Find the force

exerted by the liquid on the unit length of the cylinder

W K log
z ia

i
z ia

    

Q.8. In a two-dimensional irrotational motion of an incompressible

inviscid fluid, a source of strength m is placed at each of the

points (-1, 0) and (1,0) and a sink of strength 2m is placed

at the origin. Show that the stream lines are

 22 2 2 2 Kx y x y xy   

where K is a parameter.

Q.9. Show that the force exerted on a cylinder z a  in the

irrotational flow produced by a line source of strength

is  2X 48 ,Y 0pm a 

Q.10 A sphere of radius a is moving with constant velocity

U through an infinite liquid at rest at infinity. If p  be

the pressure at infinity, show that the pressure at any

point on the surface of the sphere, the radius through

which point makes an angle θ  with the direction of

motion is given by

 2 291P=P 1 sin2 4U   

_____________________________________________________________________________________________________
4.10 Let us sum up
_____________________________________________________________________________________________________

1. If a fluid moves in such a way that at any given instant

the flow pattern in a certain plane is the same as that in

all other parallel  planes within the fluid then the flow

is said to be two dimensional.

2. In irrotational two-dimensional motion the velocity potential

and the stream function, both satisfy Laplace equation.

93



3. Stream function is constant along a stream line.

4. An inviscid incompressibe irrotational flow is governed

by Laplace equation.

5. When a circular cylinder is fixed in a  uniform stream it

does not experience any resistance, but experiment show

that it is not so. This is known as D’ Alemberts Paradox. The

character of motion in the neighbourhood of the cylinder

is completely changed when even a small amount of

viscosity is present in the fluid and then the cylinder

experiences resistance.

6. The lift around  an aerofoil is generated when the flow

possesses circulation. The lift around a body of any shape is

given by K U  where   is the density, K is the circulation

and U is the velocity in the stream wise direction.
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