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BASIC CONCEPTS
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1.0 : Objectives

After working with this block you will be able to

 Use summation convention to write long mathematical

expressions in short.

 Define Kronecker deltas and permutation symbols

 Write determinants in tensor notations

 Understand about curvilinear coordinates

 Write a vector by using different basis.

1.1 Introduction:

In our discussion here, we have included : summation convention,

definitions and properties of Kronecker delta, permutation symbols,



determinants and curvilinear coordinates. We have discussed certain

examples to make you familiar with the methods of solving problems

related to this unit. We have also suggested interesting activities that you

may attempt as we go along.

1.2 Subscripts and Superscripts:

Let us consider three mutually orthogonal straight lines OX1, OX2,

and OX3 in the right handed orientation. These lines can determine uniquely

the position of a point, and such lines can be taken as coordinates axes

with O as origin in an Euclidean space of three dimensions. It is often

convenient to denote the coordinate with respect to these axes by x1, x2,

x3 instead of x, y, z. Thus, we refer to the coordinates of a point x1, x2, x3

as the point xi, where i takes the values 1, 2, 3. It may be noted here that

the numbers 1, 2, 3 written above x are not powers but are used merely

to distinguish the variables.

Following this notation, we can write the equation of a plane in

the form

a
1
x1 + a

2
 x2 + a

3
 x3 + a = 0

where a’s are constants.

The suffixes i and j in A
i

j
 are called superscript and subscript

respectively. The upper position always denotes superscript and the lower

position denotes subscript. Superscripts must not be confused with

exponents. If doubt arises, an exponent may be distinguished from a

superscript by using a bracket. Thus the square of xi may be denoted by

(xi)2.

Indices play an important role in ‘Tensor Analysis’. These indices

may range over from 1 to any finite natural number n but the physical
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meaningful range of the values of the indices is when n 3. We shall,

unless otherwise stated, restrict the range of the values of the indices to

1, 2, 3 only. Any index occurring only once in a given term is called a free

index. Note that any free index which appears must appear in the same

position in each term of an equation.

1.3 Summation convention:

Any term in which the same index appears twice, once as a

superscript and once as a subscript is known as a dummy index and

stands for the sum of all such terms obtained by giving this index its entire

range of values. This is known as summation convention (introduced by

Einstein).

For illustration, we can write

a1
1
 + a2

2
  + a3

3
as ai

i
 ,

a1b
1
 + a2 b

2
 + a3 b

3
as ai b

i
,

ai
1
 x1 + ai

2
 x2 + ai

3
 x3 as ai

j
 xj

In the last example, the term ai
j
 xj represents three expressions

for i = 1, 2, 3. A term may have more than one index repeated. Then all

repeated indices are to be summed over, as the following:

a
ij
xix j = a

11
x1x1 + a

12
x1x2 + a

13
x1x3

 + a
21

x2x1 + a
22

x2x2 + a
23

x2x3

 + a
31

x3x1 + a
32

x3x2 + a
33

x3x3

Note that whether the summaton on i is carried out first or on j,

does not matter. It is important to realize that i and j are dummy indices

and may be replaced by any other distinct letters; i.e.
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a
ij
xixj = a

pq
xpxq = ax

x

we would never write ajjb
jj
 because the nature of the summations in such

an expression is not well defined; that is, we must denote different index

summations by different letters.

Note also that the summaton convention does not apply to

numerical indices. For instance a
3
x3 stands for a single term.

A superscript in the denominator of a term is regarded as a

subscript. Thus,

3

3

2

2

1

1

x

v

x

v

x

v

x

v
i

i














 .

Example 1.1

If  is a function of x1,x2,x3 prove that i
i
dx

x
d





 .

Solution : Since is a function of x1, x2, x3,

therefore,

3
3

2
2

1
1 dx

x
dx

x
dx

x
d















      
i

i dx
x

d






Activity 1.1

1. Write the following using summation convention:

(i) a
1
x1x3 + a

2
x2x3 + a

3
x3x3

(ii) A21B
1
 + A22B

2
 + A23B

3

(iii) g21g
11

 + g22g
21

 + g23g
31
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2. Expand the following using the summation convention:

(i) A
1q

 Bq2, (ii)  k
k Ag

x


After studying summation convention, please answer the questions

below. If you are able to answer all the questions, you can move on to

the next section. However, if you are not able to solve all the questions,

you need to revisit this section. Answer to these questions are given at

the end of this unit.

Ex. 1.1 Detect the mistake if we write for i = 1, 2, 3, . . . , n

x
i
xi = x

1
x1 + x

2
x2 + . . . + x

n
xn.

Ex. 1.2 State ‘true’ or ‘false’

a
ij
 xi = a

1j
 x1 + a

2j
 x2 + a

3j 
x3

Ex. 1.3 How many expressions are represented by (i) a
i 
xi, (ii) a

i
 xj.

1.4 Kronecker delta, Permutation symbols and Generalized

      Kronecker delta.

* Kronecker delta : The Kronecker delta is defined as









ji

jii
j when

when

0

1
 (1.1)

In some cases i
j  is also written as 

ij
 or ij.

Thus we have

332211 ..., xxxxxxxxxx ji
ij

ji
j

i  

,31113
3

2
2

1
1   i

i

rlr
l

lr
p

p
l BBB   .

Now try to answer the following questions
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Ex. 1.4 Simplify jlk
l

i
j B

Ex. 1.5 Show that m
nn

m

x

x 



Ex. 1.6 Show that m
nn

p

p

m

x

u

u

x 






* Permutation symbols : The permutation symbols e
ijk

 and eijk are

defined by












equalareindicesmoreortwoif0

1,2,3ofnpermutatiooddanformif1

1,2,3ofnpermutatioevenanformif1

kj,i,

kj,i,

ee ijk
ijk

If follows that

eijk = ejki = ekij, and e
ijk

 = e
jki

 = e
kij

(1.2)

* Generalized Kronecker delta : The generalized Kronecker delta,

denoted by ijk
lmn  is defined by

lmn
ijkijk

lmn ee (1.3)

That is, ijk
lmn  is the product of both the permutation symbols and

its value depends on the values of the permutaion symbols. Hence it will

also take the values 1, -1, 0. It follows that

jki
mnl

jki
lmn

ijk
lmn   (1.4)

Consider the result of ijk
lmk . We have

ij
lm

ij
lm

ij
lm

ij
lm

ijk
lmk   3

3
2
2

1
1

Thus,

      













mlorjiif

lmofnspermutatiooddareijandjiif

lmofnspermutatioevenareijandjiif
ij
lm

0

1

1

 (1.5)
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Also we have

i
l

i
l

i
l

i
l

ij
lj

ijk
ljk  23

3
2
2

1
1  (1.6)

Theoem (1.1) : ij
lm  is related to the Kronecker delta as

j
m

j
l

i
m

i
lj

l
i
m

j
m

i
l

ij
lm 


  (1.7)

Proof: The principle of conservation of indices requires that any free

index, which appears must appear in the same position in each term of an

equation.

By this principle, we have

i
l

i
m

j
m

i
l

ij
lm  

where ,  are unkown constants. Since above relation is an indentity,

we have

  12
1

1
2

2
2

1
1

12
12

  12
2

1
1

2
1

1
2

12
21

Hence,

j
l

i
m

j
m

i
l

ij
lm  

Theorem (1.2): ijk
lmn , ij

lm , i
l  etc. are related as

jk
lm

i
n

jk
nl

i
m

jk
mn

i
l

ijk
lmn   (1.8)

k
n

k
m

k
l

j
n

j
m

j
l

i
n

i
m

i
l








(1.9)

Proof : By the principle of conservation of indices we have

jk
lm

i
n

jk
nl

i
m

jk
mn

i
l

ijk
lmn  
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where , ,  are unknown constants. By using the fact that above relaton

is an identity, we get

  123
12

1
3

23
31

1
2

23
23

1
1

123
123

  123
23

1
1

23
21

1
3

23
31

1
2

123
231

  123
31

1
2

23
23

1
1

23
12

1
3

123
312

Hence we get

jk
lm

i
n

jk
nl

i
m

jk
mn

i
l

ijk
lmn   .

Using (1.7) we can get (1.9).

Activity 1.2

By using identities (1.7) and (1.9) prove that

(i) 6!3  ijk
ijk

ij
ij 

(ii) 3
2

1

2

1
 ijk

ijk
ij
ij

i
i 

-- - - - - - - - - - --- - - - -
-- - - - - - - - - - --- - - - -
-- - - - - - - - - - --- - - - -

-- - - - - - - - - - --- - - - -

After studying this section please answer the questions below. If

you are able to answer all the questions, you can move on to the next

section. However if you are not able to answer all the questions, you

need to revisit this section.

Ex.1.7:  If a
ij
 (i, j = 1, 2, 3, . . . , n) are constant quantities such that a

ij
 xi xj

= 0 then show that a
kl
 + a

lk
 = 0 for all integral values of l, k = 1, 2, 3, . . . , n.

Ex. 1.8: Prove that

(i) k
m

j
n

k
n

j
mimn

ijkee  

(ii) mnp
p
k

n
j

m
iijk ee 

8



1.5 Determinants in tensor notation

Let a
i
j be an element of a determinant occurring in ith row and jth

column and a is the value of the determinant. Thus we write

3
3

2
3

1
3

3
2

2
2

1
2

3
1

2
1

1
1

det

aaa

aaa

aaa

aaa j
i

j
i 

. . . (1.10)

The subscripts indicate rows and the superscripts indicate columns. The

numerical value a is obtained as follows:

321
32 nml

lmnkji
iijk

j
i aaaeaaaeaa  . . . (1.11)

The summation on i, j, k or l, m, n gives 33 = 27 terms of which 21 terms

involve repeteated indices and therefore are zero whereas the non-

vanishing six terms are the same as those in (1.10) which we get by

expanding the determinant.

The theorems concerning the interchange of rows and columns

are given as

k
r

j
q

i
pijkpqr aaaeea  (1.12)

r
k

q
j

p
i

ijkpqr aaaeea  (1.13)

when p, q, r are 1, 2, 3 then the equations (1.12) and (1.13) reduce to

(1.11). When two adjacent indices are interchanged e
pqr

 changes its sign,

hence we get

k
r

i
p

j
qjik

k
r

i
p

j
qijk

k
r

j
q

i
pijk aaaeaaaeaaae 

The cofactor of an element j
ia in a determinant is defined as its

coefficient in the expansion of the determinant and is denoted by i
jA .

Thus we have the relation

i
J

J
K

i
K

J
K

i
J AaaAa   (1.14)
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It the elements j
ia of the determinant j

iaa   are functions of x,

then the derivative of a with respect to x is given as follows:

 321
kji

ijk aaae
dx

d

dx

da


      











 21

3
31

2
32

1

ji
k

ki
j

kj
iijk aa

dx

da
aa

dx

da
aa

dx

da
e

      kkjjii A
dx

da
A

dx

da
A

dx

da
3

3

2

2

1

1



j
i

i
j A

dx

da

dx

da
 . . . (1.15)

Thus, the derivative of a determinant is the sum of the product of

the derivative of each element and the cofactor of that element.

Let us now consider the product of two determenants

j
i

j
i

j
i cba 

In this case 
 i
jj

i bac 

1.6 Curvilinear Coordinates:

Let (x, y, z) be the carlesian coordinates of any point P in three

dimensional space. Now, we assume that these coordinates can be

expressed in terms of three independent single valued continuous

differentiable scalar point functions u
1
, u

2
, u

3
 such that

X = X (u
1
, u

2
, u

3
), Y = Y(u

1
, u

2
, u

3
), Z = Z (u

1
, u

2
, u

3
)

. . . (1.16)

It is also assumed that the functions possess continuous partial

derivative of rth order. Then these functions can be solved in terms of x,

y, z that is

The surfaces u
1
 = C

1
, u

2
 = C

2
, u

3
 = C

3
 where C

1
, C

2
, C

3
 are

constant, are the respective level surfaces of three functions. It is assumed

that these three level surfaces do not coincide or intersect in a common

10



curve. So, for each set of values that may be assigned to C
1
, C

2
, C

3
,

there   is just one point P at which the three level surfaces meet i.e., a

unique point is defined for a set of values given to u
1
, u

2
, u

3
. Then

(u
1
, u

2
, u

3
) may be used as coordinates in place of (x, y, z) to level points

of space. They are called curvilinear coordinates (since the coordinate

lines are curved).

These level surfaces are called as coordinate surfaces, through

the point P and their three curves of intersection are called coordinate

curves and the tangents at P to the coordinate curves are the coordinates

axes. The directions of the axes vary from point to point. Along

u
1
 - coordinate line, the other two parameters u

2
, u

3
 remain constant and

u
1
 only varies. Similar is the case for other two coordinate lines.

It is worth noting that a condition that the three level surfaces of

the u’s through any point P meet at no other point near P is that the

normals to the level surfaces are non-coplanar at P.

Let 


r = x i^ + y j^ + z k
^
 , then on substituting x, y, z from equation

(1.16) we have 


r  = 


r  (U
1
, U

2
, U

3
).

Thus the differential at the point P is given by

3
3

2
2

1
1

du
u

r
du

u

r
du

u

r
rd

















(1.18)

If u
2
 and u

3
 are kept constant, so that du

2
 = du

3
 = 0 and if

du > 0 then the differential 


rd  is the direction of the tangent to the coordinate

line (in the sense of u
1
 increasing). Therefore, the tangent to the u

1
 - coordinate

curve is parallel to 
1u

rd





. Similar results apply for the other coordinate curves,

and so if  321 ,, eee


 are tangent vectors not necesarily of unit length in the

directions of u
1
, u

2
, u

3
 increasing respective, then

3

3

2

2

1

1

,,






















e
u

r
e

u

r
e

u

r
(1.19)

These 321 ,, eee


are known as fundamental base vectors.
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On taking magnitudes in (1.19), we have

3
33

2
22

1
11 ,,

u

r
he

u

r
he

u

r
he























(1.20)

On substituting from (1.19) in (1.18) we have

332211



 edueduedurd (1.21)

When using curvilinear coordinates, it is advisable to introduce,

along with the fundamental base vectors 1



e , 2



e , 3



e  the reciprocal base

vectors  e1,  e2,  e3 connected with the fundamental base vectors 1



e , 2



e ,

3



e  by the formulas



ee n . k = 
k
n (1.22)

where k
n  are the Kronecker deltas.

To do this, it is sufficient to put



e 1 = 
g

ee


 32 ,


e 2 =
g

ee


 13 ,


e 3 = 
g

ee


 21 , (1.23)

where 










 



321321 . eeeeeeg

From (1.22) it also follows that

where 



















321321 . eeeeeeG (1.24)

Thus 


e 1 is perpendicular to the (


e 2, 


e 3) plane.

If the coordinate system is orthogonal, it is obvious (see (1.23)

and (1.24)) that the base vectors 


e n 
and 



e n coincide in directions, but

their magnitudes are in general different.

In case of curvilinear coordinate system u
1
, u

2
, u

3
 ,the vectors

1



e , 2



e , 3



e  tangential to the coordinate curves u
1
, u

2
, u

3
 respectively are

taken as the basis vectors. The basis 1



e , 2



e , 3



e  is said to be local since

in general it varies from point to point. It should be noted that in general

12



the basis vectors are neither perpendicular to each other nor of unit length.

The reciprocal vectors e1,  e2,  e3 can be taken as another basis. So, any

vector can be represented in terms of 1



e , 2



e , 3



e  as well as e1,  e2,  e3.

Thus we see that two sets of basis can be used to represent a vector.

Answers:

Activity 1.1

1.1 (i) a
i
 xi x3

(ii) A2i B
i

(iii) g2i g
i1

1.2. (i) A
11

 B12 + A
12

 B22 + A
13

 B32

(ii)      3
3

2
2

1
1

Ag
x

Ag
x

Ag
x 











Answer of Questions:

1.1 x
i
xi = x

1
x1 + x

2
x2 + . . . + to n terms

1.2 True

1.3 (i) 1, (ii) 9

1.4 Bik

1.5 m
nn

m

n

p

p

m

x

x

x

u

u

x 










1.7  Let Us Sum Up

In this block you have learnt about subscripts, superscripts and

the summation convention using which it becomes possible to write in

short the long expressions consisting of sum of similar terms. You have

also learnt about Kronecker delta, Permutation symbols, Generalized

Kronecker delta and their properties. You have also seen how a

determinant can be written in short in tensor notation. You have also

been introduced with curvilinear coordinates. In the latter part of this self

learning material you will need to use these concepts.
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BLOCK - 2

TENSOR  ALGEBRA

List of Contents :

2.0 : Objectives

2.1 : Introduction

2.2 : Scalars, Vectors and Tensors

2.3 : Contravariant and Covariant Vectors

2.4 : Tensors of Rank Two

2.5 : Relative and Absolute Tensors

2.6 : Symmetric and Skew-Symmetric Tensors

2.7 : Operation on Tensors

2.8 : Quotient Rule

2.9 : Exercise

2.10 : Let Us Sum Up



2.0 : Objectives

After working with this block you will be able to

   define various types of tensors

perform various algebraic operations on tensors

check up whether a given quantity is a tensor or not

2.1 Introduction :

In our discussion here we have included : the definitions of various

types of tensors, algebraic operations and their properties, quotient rule

and its applications. We have discussed certain examples also to make

you familiar with various operations on tensors.

2.2 Scalars, vectors and tensors:

A scalar is a quantity that can be specified in any coordinate

system by just one number, whereas the specification of a vector requires

three numbers, namely its components with respect to some basis in three

dimensional space. Both scalars and vectors are special cases of a more

general concept called a tensor (of order n) whose specification in any

given coordinate system requires 3n numbers, called the components of

the tensor. More specifically a tensor is defined as a system of quantities

or functions whose components obey certain laws of transformation of

coordinates from one system to the other. The key proeperty of a tensor

is the transformation law of its components. These components are

functions of positions.

Physical laws must be independent of any particular coordinate

system used in describing them mathematically if they are to be valid.

15



Since tensors have useful properties that are independent of coordinate

system hence they are used to represent various fundamental laws of

physics, engineering, science and mathematics.

2.3 Contravariant and Covaraint vectors :

If a set of n functions Ai of the coordinates xi transforms into a

set of n functions A
---- i of the coordinates  x---- i by the law

k
k

i
i

A
x

x
A




 (2.1)

we say that the functions  A
---- i are the components of a contravariant

vector in x--- - system and Ak are the components of a contravariant vector

in x - system.

If we multiply relations (2.1) by i

s

x

x




, we get

ss
k

k
k

i

i

s
i

i

s

AA
x

x

x

x
A

x

x












 

Hence
i

i

s
s A

x

x
A




 . . . (2.2)

Note : (i) Above relation is called the transformation law of a

contravariant vector. Instead of  saying that A1, A2, . . .

are the components of a contravariant vector, we simply

say that Ai is a contravariant vector.

(ii) A contravariant vector is indicated by superscripts.

(iii) By the coordinate transformation we do not get a new

vector (tensor) but the components of the same vector

(tensor) are changed.

16



Example 2.1 : Show that the quantities dxi (the infinitesimal displacement)

are contravariant vectors.

Solution : Let x--- p =  x--- p (x1, x2, . . . xN) then

...2
2

1
1 








 dx
x

x
dx

x

x
xd

pp
p

to N terms

i

p
p

x

x
xd




 dx i

which shows that the quantities dxi form contravariant vector.

If a set of n functions A
i
 of the coordinates xi transforms into a

set of n functions A
---- 

i
 of the coordinates x---- i by the law

pi

p

i A
x

x
A




 (2.3)

we say that the functions A
p
 are the components of a covariant vector in

xi system and  A
---- 

i
  are the covariant components of the same vector in  x-

--- i system.

The equation (2.3) can also be put in the form

ii

p

p A
x

x
A




 (2.4)

Note : A covariant vector is indicated by subscripts.

Definition 2.1 : If a function  of the coordinates xi transform into a

function   of the coordinates  x---- p, in such a way that  =   then  is

called a scalar.

Example 2.2

Let  be a scalar function, that is,

   pi xx  

17



Then p

i

ipp
x

x

xxx 













 
.

If we denote p
x


 by pA  and ix


 by A

i
 then above equation

takes the form

p

i

ip

x

x
AA





which shows that A
i
 i.e. ix


 transforms like a covariant vector..

2.4 : Tensors of rank two

If a set of N2 functions Aij of the coordinates system xi transforms

into a set of N2 functions A
---- pq  of another coordinate system x---- p by the law

ij
j

q

i

p
pq

A
x

x

x

x
A







 (2.4.1)

we say that the functions Aij are the contravariant components of a tensor

of order two in the x - system and A
---- pq are the contravariant componets

of the same tensor in the x--- - system.

If a set of N2 functions A
i

j
 of the coordinate system xi transforms into

a set of N2 functions p
qA  of another coordinate system p

x  by the law

i
jq

j

i

p
p
q A

x

x

x

x
A









we say that the functions A
i

j 
are the components of a mixed tensor

of order (1+1) in the x - system and p
qA  are the components of the same

tensor in the  x--- - system.

Exasmple 2.3: Show that Kronecker delta is a mixed tensor of order 2.

18



Solution : In the  x--- - system, by definition

q

p

p
q

x

x






     
q

i

i

p

x

x

x

x









     
i
j

q

j

i

p

x

x

x

x 








which is the law of transformation of a mixed tensor of rank two. Hence

Kronecker delta is a mixed tensor of rank two.

2.5 : Relative and Absolute tensors

A tensor M

N

pp
rrA ...

...
1

1
is called a relative tensor of weight  if its

components transform according to the equation

M

N

N

M

M

M

N

pp
rrs

r

s

r

p

q

p

qw
qq
ss A

x

x

x

x

x

x

x

x

x

x
A ...

...

...
...

1

11

1

1

1

1

1 .......


















where 
x

x
J




  is the Jacobian of the transformation. If w = 0 the tensor

is called absolute and is the type of tensors which we have defined above.

If w= 1 the relative tensor is of weight one.

Activity 2.1

Define a relative tensor of order (2 +1) and weight 2.

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

2.6 : Symmetric and Skew Symmetric Tensors

A tensor is called symmetric with respect to two contravariant or

two covariant indices if its components remain unaltered upon interchange

19



of the indices. Thus if pnr
qs

npr
qs AA   the tensor is symmetric in n and p. If a

tensor is symmetric with respect to any two contravariant and any two

covariant indices, it is called symmetric.

A tensor is called skew-symmetric with respect to two

contravariant or two covariant indices if its components change sign upon

interchange of the indices. Thus if mln
pq

lmn
pq AA   the tensor is said to be

skew-symmetric in l and m. If a tensor is skew-symmetric with respect

to any two contravariant and any two covariant indices it is called skew-

symmetric.

2.7 : Operation on Tensors:

Addition : The sum of two or more tensors of the same rank and

type is also a tensor of the same rank and type. Let ij
kA  and ij

kB  be two

mixed tensor of order (2+1) then

v

k

ji
ij
kv

x

x

x

x

x

x
AA










 ..




v

k

ji
ij
kv

x

x

x

x

x

x
BB










 ..




Adding we get

  








x

x

x

x

x

x
BABA

k

ji
i
jk

ij
k










 ..

Thus ij
k

ij
k

ij
j BAC 

is mixed tensor of order (2+1).

Subtraction : The difference of two tensors of the same rank and type is

also a tensor of the same rank and type. Thus if ij
kA  and ij

kB  are tensors, then

ij
k

ij
k

ij
k BAD   is also a tensor..
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Outer product : The product of two tensors is a tensor whose rank is

the sum of the ranks of the given tensors. This product which involves

ordinary multiplication of the components of the tensor is called the outer

product.

For example :

ji
k

ij
k BAC 

is the product of Ai
k
 and Bj. To prove this, let the transformation laws of

Ai
k
 and Bj be







x

x

x

x
AA

k

i
i
k









j
j

x

x
BB









Then, on taking outer product, we find that

j

k

i
ji

k x

x

x

x

x

x
BABAC




















 ..







x

x

x

x

x

x
CC

k

ji
ij
k












is a tensor of order 2 +1.

Contraction: If one contravariant and one convariant index of a tensor

are set equal, the result indicates that a summation over the equal indices

is to be taken according to the summation convention. This resulting sum

is a tensor of rank two less than that of the original tensor. The process is

called contraction.

The contraction of a tensor reduces the rank of the tensor by

two, one in contraviant and one in covariant.
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Inner Product : The inner product of two tensors is their outer product

followed by contraction.

For example, if Ai and B
j
 are two first order tensors then i

ii
i BAC 

is their inner product.

The operations of addition, multiplication, etc. of relative tensors

are the same as those of absolute tensors.

2.8 : Quotient rule

Consider a set of n3 functions A (ijk) with the indices i, j, k each

ranging over 1, 2, . . ., n. Although the set of functions A(i, j, k) has the

right number of components, we know do not know whether it is tensor

or not. Now, suppose that we something about the nature of the product

of A (i, j, k) with an arbitrary tensor. Then there is a theorem which

enables us to establish whether A (i, j, k) is a tensor without going to the

trouble of determining the law of transformation directly.

Theorem 2.8.1 : If the inner product of a quantity X with an arbitrary

tensor is a tensor then X is also a tensor.

We will prove the above theorem for the case of a tensor of

order three.

Let A (i, j, k) be a set of n3 functions, Bk be an arbitrary

contravariant tensor of order one. Let us suppose that the product

A (i, j, k) Bk is known to yield a tensor of the type Cij i.e.

A (i, j, k) Bk = Cij

then we can prove that A (i, j, k) is a tensor of the type A
ij

k 
.

Since Cij is a contravariant tensor of the second order therefore
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j

q

i

p

ijpq

x

x

x

x
CC









  j

q

i

p

kpq

x

x

x

x
BkjiAC









  r

k

j

q

i

p
rpq

x

x

x

x

x

x
BkjiAC












However

  rpq
BpqrAC 

Comparing above two equations we get

    r

k

j

q

i

p
rr

x

x

x

x

x

x
BkjiABpqrA












         0






















r

r

k

j

q

i

p

B
x

x

x

x

x

x
kjiApqrA

Now 
r

B is arbitrary, hence the quantity within the bracket must vanish.
Therefore,

    r

k

i

q

i

p

x

x

x

x

x

x
kjiApqrA












which is the law of transformation of the tensor of the type 
pq
rA . Hence

A (i j k) is a tensor of the type ij
kA .

Examples :

Ex. 2.8.1: The components of a contravariant vector in x-coordinate

system are 5 and 2. Obtain its components in the x--- - coordinate system

if x--- 1 = 6(x1)2 and x---2 = 4(x1)2 + 3(x2)2.

Solution : By the transformation law of a contravariant vector, we have

i

p

ip

x

x
AA





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2

1

2
1

1

11

x

x
A

x

x
AA










            xx 6002125 1 

   
2

2

2
1

2

12

x

x
A

x

x
AA










         = 5 (8x1) + 2 (6x2)

         = 40x1+ 12 x2.

Ex. 2.8.2 : Show that the velocity of a fluid at any point is a contravariant

tensor of rank one.

Solution : Let the coordinates of a point in the fluid be xi(t) at any time

t. Then velocity vi is given by

dt

dx
v

i
i 

Let the coordinates be transformed to new coordinates 


x . In the

transformed coordinates the velocity 


v  is given by

dt

xd
v



 .

     
dt

dx

x

x i

i





i
i

x

x
v







which is the law of transformation of a contravariant tensor of rank one.

Hence vi is a contravariant tensor of rank one.

Ex. 2.8.3: Prove that Kronecker delta is a mixed tensor of rank two.

Solution : In the x--- - system by definition

q

p
p
q

x

x





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      q

i

i

p

x

x

x

x







 (by chain rule)

      
i
jq

j

i

p

x

x

x

x 








      q

j

i

p

i
j

p
q

x

x

x

x







 .

which is the law of transformation of a mixed tensor of rank two. Hence

Kronecker delta is a mixed tensor of rank two.

Ex. 2.8.4: If 


x

x
AA

i
i




 , show that 



x

x
AA

i
i






Solution : Since 


x

x
AA

i
i






i

ki

i

k
i

x

x

x

x
A

x

x
A











 






x

x
A

x

x
A

k

i

k
i










k
i

k
i

A
x

x
A 





i

k
ik

x

x
AA










x

x
AA

i
i






Ex.2.8.5: Show that every tensor can be expressed as the sum of two

tensors, one of which is symmetric and the other skew-symmetric in a

pair of covariant or contravariant indices.

Solution : Let Aij be an arbitrary contravariant tensor of rank two. Now

   jiijjiijij AAAAA 
2

1

2

1
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But   jijiijij BAAB 
2

1
is symmetric,

and   jijiijij CAAC 
2

1
 is skew-symmetric.

 Aij can be expressed as the sum of a symmetric and a skew symmetric

tensor.

Ex. 2.8.6: Prove that the equations of transformation of components of

a contravariant vector possess the group property (or transitive property).

Solution : Let Ai and A
---
 i be the components of a contravariant vector in

the coordinate systems xi and  x--- i respectively. If the coordinate system

xi are transformed to the coordinate system x--- i then the component A
---
 i are

connected with components Ai by the relation

i

i

ji

x

x
AA




 (2.8.1)

Multiplying (2.8.1) by 
i

k

x

x



 , and summing for i, we get

kk
j

j
j

i

i

k
j

i

k
i

AA
x

x

x

x
A

x

x
A 











 

i.e. i

k
ik

x

x
AA



 (2.8.2)

The relation (2.8.2) is the law of transformation for the components

of a contravariant vector where the coordinate system x--- i are transformed

to the coordinate system xi.

Comparing (2.8.1) and (2.8.2) we see that the relation between

two sets of components is reciprocal one.

Let  A--- 
---

i be the components of the same vector in the third co-

ordinate system 
i

x . If the coordinates x--- i are transformed to the coordinates
i

x  then the law of transformation be

j

i
ji

x

x
AA




 (2.8.9)
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Substituting the value of k

j

kj

x

x
AA




  from (2.8.1) in (2.8.9) we get

k

j

j

i

kj

x

x

x

x
AA









or,
k

i

ki

x

x
AA






This relation is of the same form as the law of transformation for

the components of a covariant vector when the coordiante system xi are

transformed to the coordinate system 
i

x . Consequently the equations of

transformation of components of a contravariant vector possess the group

property (or transitive property).

2.9 Exercise for Unit - II :

2.1. If all the components of a tensor vanish in one coordinate system,

then show that they necessarily vanish in all other admissible coordinate

systems.

2.2. Prove that the equations of transformation of components of a

covariant vector possess the group property (or transitive property).

2.3. If Ai
jk
 and Bi

jk
 are components of a tensor then prove that their

sum and difference are also tensors.

2.4. Show that the outer product of two contravariant vectors is

contravariant tensor of second order.

2.5. Prove that contraction of a mixed tensor yields a scalar invariant.

2.6. If Aij are components of a contravariant tensor of order two and

B
k
 are components of a covariant vector then prove that AijB

k
 are

components of a tensor of order three but AijB
j
 are components of a

tensor of order one.
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2.7. If the sum AiB
i
 is an invariant and if the quantities Ai are the

components of an arbitrary contravariant vector then prove that

quantities B
i
 are the components of a covariant vector.

2.8. State quotient law of tensors and use it to prove that Kronecker

delta i
j
 are components of mixed tensor of rank two.

2.9. If  = a
ij
AiAj then show that can always be written as  =

b
ij
AiAj where b

ij
 is symmetric.

2.10. Show that the contraction of the outer product of the tensors A
i

and B
j
 is an invariant.

2.11. A covariant tensor of  order one has components x1 x2, 2x3 -

(x2)2, x2 x3 in cartesian coordinates x1, x2, x3. Find its covariant

components in cylindrical coordinates.

2.12. The components of a contravariant tensor in the x - system are

A11 = 4, A12 = A21 = 0 and A22 = 7.

Find its components in the x---  - system, where

   22211
74 xxx 

212
54 xxx  .

2.10 Let Us Sum Up :

In this block, you have been introduced with scalars, vectors and

different types of tensors. You have also learnt about the operations such

as addition, subtraction, outer product, contration, inner product of

various types of tensors. You have also learnt about quotient rule using

which it becomes possible to check-up whether a given quantity is a

vector or not.
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BLOCK - 3

THE METRIC TENSOR

List  of Contents :

3.0 : Objective

3.1 : Introduction

3.2 : The Metric Tensor

3.3 : Associated Tensors

3.4 : Length of a Curve

3.5 : Magnitude of a Vector

3.6 : Angle Between Two Vectors

3.7 : Vector Algebra in Tensor Notation

3.8 : Physical Components of a Tensor

3.9 : Examples

3.10 : Exercise

3.11 : Let Us Sum Up

3.0  Objective

After working with this block you will be able to

 find the base vectors in any coordinate system

 find the metric tensor in any curvilinear coordinate system

 find the physical components of a tensor

3.1 Introduction

In our discussion here we have included the difinition of metric

tensors and derivation of the expressions for the length of a curve,

magnititude of a vector, angle between two vectors and vector algebra is

tensor notation Expressions for physical components of various order

tensors will also be derived.



3.2 The Metric Tensor

Consider two infinitely closed points A(x1, x2, x3) and

A1(x1 + dx1, x2 + dx2, x3 + dx3) in space. These points define an

infinitesimal vector dr, which is independent of the choice of co-ordinate

ssytem. Let the length of the vector dr be denoted by ds. If  edefines

the unit vector directed along the straight line AA
1
 then

dr= dse. (3.1)

From the point A (x1, x2, x3) we draw co-ordinate lines which do

not lie in the same plane and are not, in general, orthogonal. Let e
n
 denote

a system of covariant base vectors, not of unit length, directed along the

tangents to the coordinate lines; then

dr
1
 = dx1e

1
, dr

2
 = dx2e

2
, dr

3
 = dx3e

3
(3.2)

where dr
1
, dr

2
, dr

3 
are infinitesimal vectors defining a parallelopiped

whose diagonal is the vector dr, i.e.,

dr
 
= dse = dxne

n 
= dx1e

1
 + dx2e

2
 + dx3e

3
(3.3)

where kk
x

r
e









(3.4)

From this, according to the rules for scalar multiplication of

vectors, we find

kn
nkk

k
n

n dxdxgedxedxds 









.2
(3.5)

where

 3,2,1,,. 









kneeg knnk (3.6)

The coefficient g
nk

 in the quadratic form of the differentials dxm

as seen from (3.6) form of symmetric matrix (g
nk

 = g
kn

). Thus, by the

quotient rule, g
nk

 are the components of a covariant tensor, called the

covariant metric tensor.
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We have already defined (in Unit-I) the reciprocal base vectors

ek by the formulas

k
n

k

n ee 


. (3.7)

We represent the vectors  e
n
 as a linear combination of the vectors ek:

e
n
 = C

nk
 ek (3.8)

 e
n
. e

m
 = C

nk
 ek. e

m

 g
nm

 = C
nk

 k
m

 g
nm

 = C
nm

Consequently (3.8) becomes

e
n 
= g

nm
em (3.9)

Hence


























3

32

2

32

1

313

3

23

2

22

1

212

3

13

2

12

1

111

egegege

egegege

egegege

(3.10)

From (3.10), by Crammer’s rule, we find

 0, 


gege
g

gofcofactor
e n

nk
n

nk
k

(3.11)

where

333231

232221

131211

ggg

ggg

ggg

g  (3.12)
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Taking the scalar multiplication of (3.11) with je


,

we have

ej.ek = gnk ej.en

      ej.ek = gnk j

n

      ej.ek = g jk . . . (3.13)

From (3.11), we have g

gofcofactor
g nknk  . . . (3.14)

From (3.13) we see that

g jk = ej.ek = ek.ej = gkj

Hence, gjk are symmetric. Substituting the value of ek  from (3.11) in (3.7)

we get

e
n

 (gmk e
m
) = k

n

      g
nm

.gmk = k

n
(3.15)

From this we conclude that g jk are the components of a

contravariant tensor. The tensor g jk is called the inverse metric tensor or

Contravatiant metric tensor. The components g jk of this tensor can be

calculated by means of (3.14).

3.3  Associated Tensors

If Ak are components of a contravariant vector, then its inner

product with g
ij
 i.e., g

ij
A

j
 are components of a contravariant vector which

is called associate to A
i
 by means of fundamental tensor. It is usually

denoted by A
i
. Thus

A
i
 = g

ij
 A

j
(3.16)

Similarly if A
k
 are components of a covariant vector, then gij A

j

are components of a contravariant vector which is called associated to

A
i
 and is denoted by Ai. Thus

Ai = gij Aj (3.17)
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Hence, A
k
 and Ak may conveniently be considered as different,

respectively covariant and contravariant components of the same vector A

.

The superscript of any tensor can be lowered by means of the

metric tensor g
ij
. This process of obtaining the associate tensor by

composition with one of the fundamental tensor is called lowering the

superscript or raising the subscript.

3.4 Length of a Curve

If ds is the length of  an infinitesimal vector dr then by (3.5) we have

ds2 = g
ij
dxidx j

i.e. ji
ij dxdxgds 

Consequently,

dt

dx

dt

dx
g

dt

ds ji

ij . (3.18)

Let s be the length of the arc goining the points which corresponds

to the values t
0
 and t

1
 of the parameter t then

dt

dx

dt

dx
gs

ji

ij

t

t
.

1

0
 (3.19)

3.5  Magnitude of a Vector

If A


 is a vector then it can be expressed as

A


= Ai e
i

(3.20)

Now, |A


|2 = A


.A


 = (Aie
i
).(Aje

j
)

      = Ai Aj g
ij

ji
ij AAgA 



(3.21)
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The vector A


can also be written as

A


= A
k
 ek (3.22)

Consequently

ji AAgA ij


(3.23)

Using (3.20) and (3.22)

|A


|2 = A


. A


 = (Ai e
i
).(A

j
 ej)

      = AiA
j
d

j
i  = Ai A

i

i
i AAA 



(3.24)

Hence

i
iji

ijji
ij AAAAgAAgA 



3.6  Angle Between Two Vectors

We know that if  be the angle between two vectors A


 and B


 then

A


.B


= |A


|.|B


| Cos






BA

BA
Cos

.

  



















BA

eBeA j
j

i
i .

sr
rs

ml
lm

ji
ij

BBgAAg

BAg
Cos  (3.25)

34



3.7  Vector Algebra in Tensor Notation

If A

 and B


be two vectors then their scalar product can also written as

A


.B


= gij A
i
B

j
 = AiB

i
 = A

j
 Bj (3.27)

From this we obtain a condition for orthogonality of two vectors A

 and B


:

g
ij
 AiAj = gijA

i
A

j
 = AiB

i
 = A

j
Bj = 0 (3.28)

The vectors product of A


and B


is given by

A


×B


 = (Ai e
i
) × (B j e

j
) = Ai Bj (e

i 
× e

j
)

         = Ai Bj (g
ijk 

e
k
)

         = g
ijk

 AiBi
 
e

k
(3.29)

where g = [
 
e1

  
e2

  
e3].

The vector product of A


and B


can also be written as

A


×B


 = Gijk A
i
B

i 
e

k 
.

where G = [
 
e1

  
e2

  
e3].

If A


, B


and C


are three vectors then the scalar triple product of

these vectors is given as

A


. B


× C


 = A


.(B


× C


)

     





 













k
k

j
j

i eCeBeACBA ..

 = (Ai
 
e

i
).g 

jkl
 BjCk

 
el

 = Ai g 
jkl

 Bj Ck

 = g
jkl

 Ai Bj Ck (3.31)

Scalar triple product (also known as box product) can also be
written as

[A


 B


C


] = (A
i
ei).(B

j 
ej × C

k 
e k)
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  = (A
i
ei).(G jkl B

j
 C

k 
e 

l
)

  = Gjki A
i
 B

j
 C

k

  = Gijk A
i
 B

j
 C

k
(3.32)

Here we have used the notation

g = [
 
e

1  
e

2  
e

3
] and G = [

 
e1

  
e2

  
e3]

i.e.

332331

232221

131211

ggg

ggg

ggg

g 

and
333231

232221

131211

ggg

ggg

ggg

G 

3.8  Physical Components of a Tensor

The base vectors 
 
e

i
 and 

 
ei are in general not unit vectors. In fact,

their lengths are

iii
ii

i gege 


, , i not summed

Since we know that

i
ii

i evevv




therefore,
ii

i

ii
i

iii

i
ii

i

i g

e
gv

g

e
gvv











 
3

1

3

1

      i
ii

i
i

iii
i

i

egvegvv
^3

1

^3

1





 (3.33)

Then since 
ii

i
i

g

e
e




^

 and 
ii

i
i

g

e
e



ˆ  are unit vectors, all

components ii
i gv and ii

i gv (i not summed) will have the same physical
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dimensions. It is seen that ii
i gv  are the component of 



v resolved in the

direction of unit vectors ie
^

which are tangent to the coordinate lines; and

that ii
i gv  are the components of 



v  resolved in the direction of unit

vectors e^ i which are perpendicular to the coordinate planes. The

components

ii
i gv and ii

i gv ,   i not summed,

are called the physical components of the vector 


v . They do not transform

according to the tensor transformation law and are not components of

tensors.

The physical components ii
i gv and ii

i gv ,  (i not summed),

are denoted by v(i) and v
(ii)

 respectively.

The physical components of second order tensor will be defined

in terms of the physical components of a mixed tensor, and the physical

components of a mixed tensor will be defined from a tensor equation

involving a mixed tensor and contravariant vectors. For example, the

inner product of a second order mixed tensor and contravariant vector is

given by

i = T i

j
 n j (3.34)

Substituting the physical components of  i and n j, we get

   

jj

j
i
j

jii

i

g

n
T

g




3

1



or    
 
   ji
j

j

j

jj

iii
j

j

i nTn
g

g
T 




3

1

3

1



where  
  i

j

jj

iii
j T

g

g
T 
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is the physical component corresponding to T i

j
. Hence, the tensorial

components of a mixed tensor are related to its physical components by

 
 i
j

ii

jji
j T

g

g
T  (3.35)

where i, j are free indices and are not summed.

The physical components of other second order tensors are related

to T (i)

( j) 
 by relations

 
  ikj
k

jj

kk

k

j
k

ikij gT
g

g
TgT 




3

1
(3.36)

 
  ljk
l

kk

ll
ik

lk

ljk
lik

j
i gT

g

g
ggTgT 




3

1

3

1
(3.37)

 
 k
j

kk

jj
ik

k

k
jikij T

g

g
gTgT 




3

1
(3.38)

In orthogonal coordinates, a basis e
i
 and its reciprocal ei

 
are

identical in directions and the unit base vectors are given by

i

i
i

i
i eh

h

e
e





^

where iii gh  , i not summed.

In this case v(i) = v
(i)

 and hence we denote the physical

components of a vector v by v(i).

Thus,

     
 

ii
iiii

ii gvvgvv  ,
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   

i
i

i
i

i

h
vivvhv

1
, 

 
     ivhv

h

iv
v ii

i

i  , (3.39)

where i is not to be summed.

The physical components of a second order tensor T are denoted

in orthogonal coordinates by T(ij).

The relations (3.35) to (3.38) reduce to

 ijT
h

h
T

i

ji
j  (3.40)

 
  ljk
l

kk

ll
ik

lk

i
j gT

g

g
gT 




3

1

3

1

      
  jji
j

ii

jj
ii gT

g

g
g

      
 

2
2 1

j

i
j

i

j
i h

T
h

h
h

 ijT
h

h
T

j

ij
i  (3.41)

 ijT
hh

T
ji

ij 1
 (3.42)

 ijThhT jiij  (3.43)

3.9  Examples:

3.1 : Find the metric of a Euclidean space referred to

(a) Cartesian Coordinates

(b) Cylindrical Coordinates
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Solution:
(a) In cartesian coordinates we know that

^

3

^

2

^

1 ,, kejeie 


       1..
^^

1111 


iieeg

.0..
^^

2112 


jieeg

Similarly g
22

 = g
23

 = 1, g
13

 = g
31

 = g
21

 = g
23

 = g
32

 = 0

Therefore, the expression for the metric

ds2 = g
ij
 dxi dxj

becomes

ds2 = dx2 + dy2 + dz2

This is the metric referred to cartesian coordinates.

(b) The cartesian coordinates x, y, z and cylindrical coordinates

r, , z are related by

x = r cos, y = r sin, z = z

Let R


 denote the position vector of a point P.

Then

R


  = xi^ + yj^ + zk
^

R


 = r cosi^ + r sinj^ + zk
^

r

R
e r









^^

sincos jie r  


    
^^

jrir
R

e 


 cossin 








    
^

k
z

R
e z 








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 22 sincos. 


rrrr eeg =1

         222 cossin. rrreeg 




     11. 2 


zzzz eeg

     0sincoscossin. 


 rreeg rr

     0,0. 


rzzz geeg 

Therefore, the expression for the metric

ds2 = g
ij
 dxi dxj

becomes

  ds2 = g
rr
 dr2 + g d

2 + g
z2

 dz2 + 2g
r drd + 2gz

 ddz + 2g
zr
 dz dr

     22222 dzdrdrds  
This is the metric referred to cylindrical coordinates.

3.2 : Calculate the fundamental tensor g
ij
 and the conjugate metric tensor

for the given metric

   ds2 = 2(dx1)2 + 3(dx2)2 + 5(dx3)2 + 4dx1dx2 - 6dx2 dx3 + 2dx1 dx3.

Solution: The line element can be written as

ds2 = 2(dx1)2 + 2dx1dx2 + dx1dx3

+ 2dx2dx1 + 3(dx2)2 - 3dx2dx3

+ dx3dx1 - 3dx3dx2 + 5(dx3)2

Thus metric tensor is given by




















531

332

122

ijg

 g = |g
ij
| = 2(15 - 9) + 2 (-3 - 10) + 1 (-6 - 3)

     = 12 - 26 - 9 = -23

The conjugate metric tensor gij is defined by

g

inofCofactor ijijij
gg

g 
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23

9
,

23

13
,

23

6 131211











 ggg

23

8
,

23

9
,

23

13 232221










 ggg

23

2
,

23

8
,

23

9 333231










 ggg

Therefore,

































23

2

23

8

23

9
23

8

23

9

23

13
23

9

23

13

23

6

ijg

.

3.3 : Prove that g  is a relative tensor of weight one.

Solution: We know that

333231

232221

131211

ggg

ggg

ggg

g 

and also that the elements of the determinant g satisfy

q

j

p

i

ijpq
x

x

x

x
gg










Taking determinant of both sides we get

g
x

x

x

x
g

q

j

p

i










 gJg 2

gJg 1

which shows that g  is a relative tensor of weight one.

3.4 : Find the physical components of velocity of a particle in spherical

coordinates.

Solution : We know that the velocity of a particle at any point is a

contravariant tensor of order one.
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The contravariant components of the velocity are

dt

d

dt

dx

dt

d

dt

dx

dt

dr

dt

dx 


321

,,

Therefore, the physical components of the velocity are

dt

dr

dt

dr
g

dt

dx
g rr 

1

11

dt

d
r

dt

d
g

dt

dx
g


 

2

22

dt

d
r

dt

d
g

dt

dx
g


 sin

3

33 

(Here we have used the results g
rr
 = 1,       g = r2,   g = r2 sin2)

3.5 : Prove that g is a relative tensor of weight two.

Solution : The elements of the determinant g given by g
pq

 transform

according to

k

q

j

p

pqjk
x

x

x

x
gg










Taking determinant of both sides, we get

k

q

j

p

x

x

x

x
gg










2Jgg 

which shows that g is a relative tensor of weight two.

3.10  Exercise for Unit III

3.1. Prove that for an orthogonal coordinate system,

g
12

 = g
23

 = g
31

 = 0.

3.2. Prove that for an orthogonal coordinate system

333322221111

1
,

1
,

1

g
g

g
g

g
g 

3.3. In a two dimensional space, find the quantities gij, if g
ij
 = i + j.
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3.4. Find g
ij
, gij and g corresponding to the metric

ds2 = 5(dx1)2 + 3(dx2)2 + 4(dx3)2 - 6dx1 dx2 + 4dx2dx3

3.5. If A
j
 = g

jk
 Ak then prove that Ak = gjk A

j
.

3.6. Find the metric of an Euclidean space referred to spherical coordinates.

3.7. Corresponding to the metric ds2 = (dx1)2 + 2(dx2)2 + 3(dx3)2 - 8dx2

       dx3 evaluate g and gij.

3.8. Find the square of the element of arc in cyclindrical coordinates.

3.9. Prove that a cylindrical coordinate system is orthogonal.

3.10. Prove that

(i) det [g
ij
] = J2

(ii) det [gij] = 2

1

J

3.11. Bipolar coordinates (,) in two dimensions are related to Cartesian

coordinates (x,y) by



coscosh

sinh


x ,



coscosh

sin


y

(a) Find the covariant base vectors e and e.

(b) Are the axes of the curvilinear coordinate system (, )

     orthogonal?

(c) Calculate the covariant metric tensor g
ij
.

3.12. For the transformation:

3211
23 xxxx 

3212
3xxxx 

3213
32 xxxx 

find the following:

(i) The Jacobian of transformation and explicitly write out the

    inverse transformation.
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(ii) The covariant base vectors  e
j
 .

(iii) Contravariant base vectors ej.

(iv) metric tensors g
ij
 and gij,

(v) The expression for the line element.

Here (x1, x2, x3) are Cartesian coordinates and  321
,, xxx  are curvilinear

coordinates.

3.13. For the transformation of coordinates

x = y1 + y2 + y3

y = y1 - y3

z = 2y2 - 3y3

find the

(i) covaraint base vectors

(ii) contravariant base vectors

(iii) metric tensors g
ij
 and gij.

3.14. Calculate the metric tensor g
ij
 for the curvilinear coordinates

(y1, y2, y3) if

x = y1 y2 y3

 2321 1 yyyy 

    2221

2

1
yyz  .

3.11 : Let Us Sum Up

In this block you have learnt how to find the find base vectors and

metric tensor is various coordinate system.  You have also learnt how to

write the expressions for the length of a vector, angle between two vectors

and the vector algebra in tensor notation. You have also learnt the method

of finding the physical components of different types of tensors.
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BLOCK - 4

CHRISTOFFEL SYMBOLS

List of Contents :

4.0 : Objective

4.1 : Introduction

4.2 : Differentiation of Base Vectors

4.3 : Christoffel Symbols in Terms of Metric Tensors

4.4 : Christoffel Symbols in Orthogonal Coordinate

Systems

4.5 : Examples

4.6 : Exercise

4.7 : Let Us Sum Up

4.0 : Objective

After working with this block you will be able to

 differentiate the base vectors

 find Christoffel symbols of the first kind and second kind

in any coordinate system.

 find Christoffel symbols in orthogonal coordinate system.

4.1 Introduction :

In our discussion here we have included the definitions of

Christoffel symbols of the first kind and the second kind and the methods

to derive them. Some examples are also included to derive to the

expressions for Christoffel symbols in orthogonal coordinate systems.



4.2 Differentiation of Base Vectors

The base vectors of a curvilinear coordinates system are point

functions which changes their directions from point to point. Since we

know that any vector A


 can be written as

A


 = A
j
 e

j
 = Aj ej

therefore, if we form differential of A

, we get

dA


= e
j
 d A

j 
+ A

j
d e

j
(4.1)

dA


= ej d Aj
 
+ Ajd ej (4.2)

In order to compute dA


 we must obtain formula for de
j
 and dej.

Since any vector can be expressed as a linear combination of base

vectors, the derivative of base vectors 
i

j

x

e






 can be expressed as

3
3

2
2

1
1








eee
x

e
ijijiji

j (4.3)

or, k
k
iji

j
e

x

e 






(4.4)

The relation (4.4) gives

k
ik

ij
i

i

j
j edxdx

x

e
ed










 (4.5)

The quantities k
ij  are called Christoffel symbols of the second

kind. If the coordinates are Cartesian, then e
j
 are costant vectors, hence

(4.4) gives 0k
ij  while for a curvilinear coordinate system 0k

ij .

Since we know that

jj
x

r
e









(4.6)
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therefore, jijii

j

xx

r

x

r

xdx

ed




























2

         



























ijij x

r

xxx

r2

     
j

i

i

j

x

e

x

e












     k
k
jik

k
ij ee



 (using 4.4)

      k
ji

k
ij  (4.7)

In some books k
ij  is also denoted as  k

ij . From (4.4) we have

l
l
iji

j
e

x

e 






therefore, l
iji

j
k

x

e
e 







. ek.e
l

k
l

l
iji

j
k

x

e
e 









.

k
iji

j
k

x

e
e 









.

 k
ij ek.

i

j

dx

e



(4.8)

This expresses the Christoffel symbols in terms of base vectors.

To prove:

i
jk

j

k

i

e
x

e



 

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Proof:

We know that

i
j

i

j ee 


.

0.. 














k

i

j

i

k

j

x

e
ee

x

e

k

i

jk

j
i

x

e
e

x

e
e
















..

k

i

j
i
jk x

e
e









. (Using 4.8)

i
jkjk

i

e
x

e










. (4.9)

We now represent 
k

i

x

e





 as

m
i
mkk

i

eB
x

e 




 (4.10)

Multiplying both sides of this equality scalarly by e
j
 we get

j

m
i
mkjk

i

eeBe
x

e 






.

     i
jk

i
jk B (using 4.9)

Hence (4.10) takes the form





 ji

jkk

i

e
dx

e (4.11)

If we know the laws of transformation of ek
 
and e

j 
then the laws of

transformation for
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i

j
k

i
jk x

e
e









.

       





















































 e
x

x

x
e

x

x
ji

k

.

       









 





















 ee

xx

x

x

x

x

e
e

x

x

x

x
ji

k

ij

k

..
2

        













 
ji

k

ij

k

xx

x

x

x

x

x

x

e
e

x

x

x

x
























 2

.

    ji

k

ij

k
k
ij xx

x

x

x

x

x

x

x

x

x
































2

(4.12)

The equation (4.12) shows that k
ij  are not the components of a

tensor except when

0.
2









ji

k

xx

x

x

x


 (4.13)

4.3 Christoffel symbols in terms of metric tensors

We know that

g
ij
 = e

i
.e

j

Defferentiating partially with respect to k, we get

k

j
ljk

i

k

ij

x

e
ee

x

e

x

g

















..

      n
n
jkijm

m
ikk

ij eeee
x

g 





 ..

          in
n
jkmj

m
ikk

ij gg
x

g





(4.14)
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We denote m
ik  g

mj
 by [ik, j] or  ik, j and define it as Christoffel

symbol of the first kind.

Thus (4.14) becomes

ijkjikk
ij

x

g
,, 




(4.15)

From this we get

ikjkijk
ij

i
jk

j
ik

x

g

x

g

x

g
,, 












ijkjikjkikji ,,,, 

= 2 ij,k




















 k
ij

i
jk

j
ik

kij x

g

x

g

x

g

2

1
, (4.16)

By the definition of Christoffel symbols of the first kind we know that

kij
m
ijmkg , (4.17)

Multiplying (4.17) by gnk we get

gnkg
mk

 
ij

m 
= gnk ij,k


m

n 
ij

m 
= gnk ij,k


ij

n 
= gnk ij,k (4.18)

Thus, 


















 k
ij

i
jk

j
iknkn

ij x

g

x

g

x

g
g

2

1
. (4.19)

To prove   l
klk

g
x





log

Proof: We know that

g = det (g
ij
) and 

g

gofCofactor
g ijij 

i.e, Cofactor of g
ij
 = g gij
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Therefore,

ij
k

ij

k
gg

x

g

x

g









        ijkjik
ijgg ,, 

        ijk
ij

jik
ij ggg ,, 

        ni
n
jk

ij
mj

m
ik

ij ggggg 

 
n
jk

j
n

m
ik

i
mkx

g

g





 1

        j
jk

i
ik 

        l
lk

l
lk 

       
l
klkx

g

g





2
1

k
l
kl x

g

g 



2

1

  g
xk

l
kl log




 (4.20)

To prove,

k
hj

hii
hj

hk
i

ik

gg
x

g





Proof: Since we know that

gik = ei. ek

Therefore,

j

k
ik

j

i

j

ik

x

e
ee

x

e

x

g

















..

     















hk
hj

ikhi
hjj

ik

eeee
x

g
. (by using 4.11)

     k
hj

hii
hj

hk
j

ik

gg
x

g





 (4.21)
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4.4 Christoffel symbols in orthogonal coordinate systems

In an orthogonal system of coordinates g
ij
 = 0 if i  j and g

ii
 = h

i

2
.

When all the indices i, j and k are different, the formula




















 k
ij

i
jk

j
ik

kij x

g

x

g

x

g

2

1
, (4.16)

gives

kij ,  = 0 when i, j, k are different. (4.22)

When i = k and j is different, we get




















 i
ij

i
ji

j
ii

iij x

g

x

g

x

g

2

1
,

      j
i

x

h





2

2

1

      j
i

iiij x

h
h



 , (4.23)

In case i = j = k, the formula (4.23) works. It also works when

j = k. The case when i = j we have




















 k
ii

i
ki

i
ik

kii x

g

x

g

x

g

2

1
,

k
i

x

h





2

2

1

 0 kiik gg

    k
i

ikii x

h
h



 , (4.24)

The christoffel symbols of second kind 
ij

k
 are given by the formula

nij
knk

ij g , (4.18)

In orthognal coordinates 
2

1

i

ii

h
g  . Hence we get

0k
ij  when i, j, k are all different. (4.25)

This case when i = k and j is different, we have

iij
ii

nij
ini

ij gg ,, 
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     j
i

i
i x

h
h

h 



2

1

      j
i

i

i
ij x

h

h 



1

(4.26)

This formula also holds good when i = j, and j = k when i is different.

The case when i = j and k is different, we have

kii
kk

nii
knk

ii gg ,, 

      











k
i

i
k x

h
h

h2

1

k
i

k

ik
ii x

h

h

h




 2 (4.27)

4.5 Examples:

4.1. Determine the Christoffel symbols for the metric

       222122212 dxxxdxds 
Solution:

Comparing the given metric with

ji
ij dxdxgds 2

we get

    0,,1 2112

2122
2211  ggxxgg

Here g
ij
 = 0 for i  j therefore the coordinate system  (x1, x2) is

orthogonal. Now for orthogonal coordinate system the non-vanishing

Christoffel symbols of the first kind are

1
22

221
2

21,22 x

g
g

x

h
h










       
   

   
  11

2122

2122 2.
2

1
. xx

xx
xx 




                 
   

   
  11

2122

2122
2
2

22,22 2.
2

1
. xx

xx
xx

x

h
h 








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   
   

  11

2122

2122
1
2

22,212,12 2.
2

1
. xx

xx
xx

x

h
h 









and the non-vanishing Christoffel symbols of the second kind are

    
    

 1

2

1
212

2

2

1
2122

1
2

2
1

21
22 2

2

1
.. x

xx

xx
x

h

h

h










11
22 x

       
 2

21222122
2
2

2

2
22 2.

2

1
.

11
x

xxxxx

h

h 







    ,2122

2
2
22

xx

x




1
2

2

2
21

2
12

1

x

h

h 




            
 1

21222122
2.

2

1
.

1
x

xxxx





        2221

1

xx

x




4.2. Determine the Christoffel symbols in the curvilinear coordinate system

(u, v, z) where

  zzuvyvux  ,,
2

1 22

Solution: If i^, j^, k^  are unit vectors along x-axis, y-axis, z-axis in Carterian

coordinate system (x,y,z) and r is the position vector of a point of P then
^^^

kzjylxr 


      ^^^
22

2

1
kzjuvlvur 



If e
1
, e

2
, e

3
 are base vectors along u axis, v axis, z axis then we

know that

z

r
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r
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r
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







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Therefore,

e
1
 = u i

^
 + v J

^

e
2 
= -v l

^
 + u J

^

e
3 
= k

^

Since we know that g
ij
 = e

i
. e

j
  therefore,

g
11

 = e
1
.e

1
 = u2 + v2, g

22
 = e

2
.e

2
= u2 + v2,

g
33

 = e
3
.e

3
 = 1, g

12
 = e

1
.e

2
= u(-v) + v(u) = 0

g
23

 = e
2
.e

3
= 0, g

31
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3
.e

1
= 0

Hence metric tensor g
ij
 become
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Here we observe that g
ij
 = 0 when i  j therefore the coordinate

system (u, v, z) is orthogonal and hence
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222

22
111 vughvugh 

,1333  gh

,
11

2
iii

ii

hg
g 

 































100

0
1

0

00
1

22

22

vu

vu

g ij

Now the non-vanishing Christoffel symbols of the first kind are given by
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and the non vanishing Christoffel symbols of the second kind are given by
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In cartesian coordiante system h
1
 = h

2
 = h

3
 = 1 which gives that

Christoffel symbols vanish. In cylendrical polar coordiantes h
1
 = 1, h

2
 = r,

h
3
 = 1, hence the only non-vanishing christoffel symbols are

rrr   ,,

rr
r   ,

rrr

1
 





In spherical polar coordinates h
1
 = 1, h

2
 = r, h

3
 = r sin and non-

vanishing christoffel symbols are
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rrrr  ,,, 


2

,,, sinrrrr 

 cossin2
,,, r


2sin, rr rr 

rrrrr

1
 











 






 cot,cossin 

4.6 Exercise:

4.1. Prove that christoffel sumbols of second kind are not a tensor, but

if the laws of transformation of coordinates are linear they are

components of a tensor of type (1,2).

4.2. Prove that both the christoffel symbols and 
ij,k

 and 
ij

k

 
are symmetric

in i and j.

4.3. Prove that l
ijklkij g  ,

4.4. Determine the christoffel symbols of the first kind and the second

kind in (a) rectangular, (b) cylindrical, and (c) spherical polar

coordinates.

4.5. Determine the christoffel symbols of the first kind and second

kind for the coordinate system (u, v, z) where x = a coshu cos V,

y = a sinhu sin V, z = z.

4.6. Determine the christoffel symbols of the first kind and second kind

for the coordinate system (u, v, ) where x = uv cos, y = uv sin,

 22

2

1
vuz   .

4.7. Calcualte the six christoffel symbols of the two dimensional uv -

system defined by

x = 2 eu-v, y = -e3u+2v.

4.7 Let Us Sum Up

In this block you have learnt how to compute Christiffel symbols of

the first kind and the second kind in orthogonal coordinate systems. You

have also learnt that Christoffel symbols, in general, are not tensor quantities.
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BLOCK - 5

COVARIANT DIFFERENTIATION

List  of Contents :

5.0 : Objectives

5.1 : Introduction

5.2 : The Covariant Derivative of Tensors

5.2.1 : Covariant Derivative of Scalar Function

5.2.2 : Covariant Derivative of Relative Scalar

5.2.3 : Covariant Derivative of Relative Vector

5.2.4 : Covariant Derivative of Second Order
Tensors

5.3 : Rules of Covariant Derivatives

5.4 : Gradient, Divergence, Curl and Laplacian in
Tensor Notation.

5.5 : The Riemann-Christoffel Tensor

5.6 : Covariant Curvature Tensor

5.7 : Examples

5.8 : Exercise

5.9 : Let Us Sum Up

5.0 Objective

After working with this block you will be able to

 find covariant derivative of various types of tensor

 write the expressions of gradient, divergence, curl and
Laplacian in any coordinate system.

 define the Riemann-Christoffel tensor

5.1 Introduction

In our discussion here we have included : the covariant derivative
of tensors, rules of derivatives, gradient, divergence, curl and Laplacian
in tensor notation. Certain examples related to them a will also be
discussed.
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The covariant derivative of tensors

Covariant derivative of a vector : Let (xi) denote a system of

curvilinear coordinates in the Euclidean 3-D space, and let e
i
 be the natural

basis for the system. Consider a vector field defined by A


. At a point P, we

have

 A


= Ai e
i

(5.1)

The differential dA

 is given by











i
i eAdAd

      
i

ii
i edAdAe





      j
ji

i edAdAe




      k
k

jjk
k

i

i dx
x

e
Adx

x

A
e













      k
i

i
jk
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k

i

i dxeAdx
x

A
e









i
ki

jk
j

k

i

edxA
x

A
Ad
























 (5.2)

Let i
i eAAd


 (5.3)
then

ki
jk

j
k

i
i dxA

x

A
A 















or, k
k

ii dxAA , (5.4)

where, i
jk

j
k

i

k
i A

x

A
A 




, (5.5)

Since Ai are contravariant components of a vector, and dxk are the

contravariant components of any arbitrary vector hence we conclude from

(5.4), by quotient rule, that Ai,
k
 are the components of a second order mixed

tensor. We define Ai,
k
 as the covariant derivative of Ai.
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Let A


 = A
i
 ei (5.6)

The differential d A

 is given by



 i
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i edAdAeAd
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i edAdAe
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A
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k
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A
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



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
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
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
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 ikj
ikjk

i edxA
x

A
Ad (5.7)

Let  


 i
i eAAd  (5.8)

       
kj

ikjk
i

i dxA
x

A
A 






 





or, k
kii dxAA , (5.9)

where  
j
ikjk

i
ki A

x

A
A 




, (5.10)

Since A
i
 are covariant components of a vector, and dxk are

contravariant components of any arbitrary vector hence we conclude from

(5.9), by quotient rule, that A
i,k

 are the covariant components of a second

order tensor. We define A
i,k

 as the covariant derivative of A
i
.

Note : It should be noted that the covariant derivatives Ai,
k
 and A

i,k
 are

different from the partial derivatives k

i

x

A




 and k
i

x

A




 respectively. In fact, the

partial derivatives k

i

x

A




and k
i

x

A




 are not the components of a tensor, in

general. This may be shown by writing the law of their transformation to

another system.
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If the vector field under consideration is the cartesian coordinates,

then the basis is constant and all Christoffel symbols 
ij,k

 and 
ij

k

 
vanish. In this

case, the covariant derivatives of a function is identical to the partial derivatives

of the function, i.e., when (xi) is a cartesian system of coordinates then

k
i

kik

i

k
i

x

A
Aand

x

A
A








 ,, (5.11)

5.2.1 Covariant derivative of a scalar function :

Let  define a scalar field of the coordinates xk in the space; then

kx


 are the covariant components of a vector..

Since k
k

dx
x

d




 , we see that the covariant derivative of  is

identical to the partial derivative of ; that is

kk x



 , (5.12)

5.2.2 Covariant derivative of relative scalar of weight:

Let ~ be a relative scalar of weight , then   



 ~

g  is an

absolute scalar. If  ~  is a point function then
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klkk x





 
~

~
~

, (5.13)

is called the covariant derivative of 
~
 with respect to xk. The 

~
,
k
 given by

above equation is the covariant derivative of a relative scalar 
~
 of weight .

5.2.3 Covariant derivative of a relative vector:

Let F i be a relative vector of weight , then the vector f i defined by

  ii Fgf
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 (5.14)

is an absolute vector. Now
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(5.15)

Multiplying (5.14) by 
kj

i

  and adding to (5.15) we get
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64

which is a relative second-order mixed tensor of weight . Above formula

defines the covariant derivative of a relative vector F i of weight .

5.2.4 Covariant derivative of a second order tensors

(i) Let T


 be a second-order tensor which can be expressed as

T


 = e
i
 e

j
 T ij (5.17)

The dT
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differential of T


is given by
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Let ji
ij eeTTd
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which is called the covariant derivative of T ij. T ij

,k
 are components of a tensor

of order (2+1).
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(ii) Let T


be a second order tensor which can be expressed as

T


= ei, ej T
ij

(5.21)

The differential dT


 of T


is given by

ij
ji

ij
ji

ij
ji dTeeTedeTeedTd
























       
k

k

ijji
ijk

j
i

ij
j

k

i

dx
x

T
eeT

x

e
eTe

x

e





































       
k

k

ijji
ij

qj
qk

i
ij

jpi
pk dx

x

T
eeTeeTee 
























       
k

k

ijji
qi

jiq
jkpj

jip
ik dx

x

T
eeTeeTee 















        























 jikq

jkqi
p
ikpjk

ij eedxTT
x

T

        























 jikq
jkqi

p
ikpjk

ij eedxTT
x

T
(5.22)

Let dT


 = T
ij
 ei ej (5.23)

then it follows that

kq
ikqj

q
jkpjk

ij
ij dxTT

x

T
T 















       k
kij dxT ,

where
q
jkqj

p
jkpik

ij
kij TT

x

T
T 




, (5.24)

which is called the covariant derivative of T
ij
.T

ij,k
 are components of a

covariant tensor of order three.
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(iii) Let T


be a tensor of second order. We express T


as

T


= ei e
j
 T

i

j (5.25)

The differential d T


of T


is given by

j
ij

ij
ij

ij
ij

i dTeeTedeTeedTd






















      
k

k

j
i

j
ij

ik
jij

ijk

i

dx
x

T
eeT

x

e
eTe

x

e




































      
k

k

j
i

j
ij

iq
q
jk

ij
ij

pi
pk dx

x

T
eeTeeTee 














      
k

k

j
i

j
ip

ij
j
pk

ij
qj

iq
ik dx

x

T
eeTeeTee 







































 j
ikq

ik
j

q
j
pk

p
ik

j
i eedxTT

x

T
Td (5.26)

Let dT


= T
i
j ei e j (5.27)

then if follows that

kq
ik

j
q

j
pk

p
ik

j
ij

i dxTT
x

T
T 















where q
ik

j
q

j
pk

p
ik

j
ij

ki TT
x

T
T 




, (5.28)

which is called covariant derivative of T
i

j
. T

i
j
,k
 are components of a mixed

tensor of order (1+2)..

Theorem : The covariant derivatives of the base vectors e
i
, the reciprocal

base vectors ei, the metric tensor g
ij
, the inverse metric tensor g

ij
 and the

g = |g
ij
| are all zero.

Proof : Since e
i
, ei, g

ij
 and gij are absolute tensors, therefore
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k
ijkj

i
ji e

x

e
e 










,

       k
ijk

k
ijk ee 



      0, 


jie (5.29a)

i
jk

k
j

i

j
i e

x

e
e 










,

      i
jk

i
jk

k ee 


0, 


j
ie (5.29b)

q
jkqi

p
ikpjk

ij
kij gg

x

g
g 




,

       ijkjikk
ij

x

g
,, 






       ijkjikijkjik ,,,, 

0,  kijg (5.30a)

j
qk

qii
pk

pj
k

ij
ij
k gg

x

g
g 




,

      j
qk

qii
pk

pjj
qk

qii
pk

pj gggg  (by 4.21)

0,  ij
kg (5.30b)

Since g = |g
ij
| is a relative scalar of weight two, therefore

i
ikkk g

x

g
g 




 2,

      












 i
ikkx

g

g
g

2

1
2

         












 g
x

g
x

g kk loglog2

 g
,k
 = 0 (5.31)
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As a consequence of constancy of g
ij
 and gij with respect to

covariant differentiation, we have

  kj
ij

kj
iji

k AgAgA ,,,  (5.32a)

  j
kijk

j
ijki AgAgA ,,,  (5.23b)

But this is precisely what one expects if the metric tensors are to

be used for raising and lowering indices of all tensors, including those

arise from covariant differentiation.

5.3  Rules of Covariant Derivatives:

Since covariant differentiation is directly related to the partial

differentiation, the rules of partial differentiation are applicable to the

covariant differentiation as well.

Theorem: If Ai and Bi are two vectors then

  i
k

i
kk

ii BABA ,,, 

Proof: Since Ai and Bi are two vectors therefore Ai + Bi is also a vector.

Now

      i
kj

jjii
kk

ii BABA
x

BA 



 ,

        i
kj

ji
kj

j
k

i

k

i

BA
x

B

x

A











        

























 i
kj

j
k

i
i
kj

j
k

i

B
x

B
A

x

A

  i
k

i
kk

ii BABA ,,,  (5.33)

This shows that covariant derivative of the sum of two vectors Ai

and Bi is equal to the sum of the covariant derivatives of Ai and Bi.

Theorem : If Ai and B
j
 are two vectors then

  kj
ii

kkj
i BAABA ,,,


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Proof : If Ai is a contravariant vector and B
j
 is a covariant vector then we

know tht their outer product AiB
j
 is a mixed thensor of order two.

    q
jkq

ii
pkj

p
j

i
kkj

i BABABA
x

BA 




,

    q
jkq

ii
pkj

p
k

ji
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i

BABA
x

B
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x

A












    




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
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



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 q
jkqk
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i
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p
k

i

B
x

B
ABA

x

A

         kj
i

j
i
kkj

i BABABA ,,,
 (5.34)

Theorem: The order of operation of contraction and covariant differentiation

is interchangeable.

Proof: For a tensor A
i

j
 we have

q
jk

i
q

i
pk

p
jk

i
ji

kj AA
x

A
A 




,

Equating i = j, we get

q
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i
q

i
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p
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i
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ki AA
x

A
A 




,

      q
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i
q

q
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i
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i
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x

A




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      k

i
i

x

A






        k
i
iA , (5.35)

5.4 Gradient, Divergence, Curl and Laplaciam in tensor notation.

Gradient :Let  be an absolute scalar function, then

 









.i
i edxd

we also have
i

idxd , 

iie ,.  


i

i

e ,


 (5.36)
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Above expression defines the gradient of a scalar where 
,i
 is

covariant derivative of  and reduces to the partial derivative 
ix

 .

Divergence : If  A


= Ai e
i
 then divergence of A


 is defined as the contraction

of covariant derivative of Ai with respect to xi. Thus

. A


=A
i

,i
(5.37)

Theorem :  i
i

Ag
xg

A




 1

.

Proof :

i
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p
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i
i
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A
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
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g
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x

A









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

















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i
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g
A

x
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g
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          i
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Ag
xg

A




 1

. (5.38)

Curl of a vector. The curl of a vector A


 is defined defined by

  ijk
ijk eAA



 ,curl  (5.39)

Laplacian: The Laplacian of a scalar function  is defined as the divergence

of grad  i.e.













i
iediv ,

2  (5.40)
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Theorem: 














k

jk
j x

gg
xg

 12

Proof:   graddiv2 

        











k
kediv , .

        









jk
jk eg ,div 

         k
jk

j
gg

xg
,

1 



 (using 5.38)
















k

jk
j x

gg
xg

 12
(5.41)

5.5 The Riemann - Christoffel tensor

In case of tensor the order of covariant differentiation is not, in

general, commutative. Let us discuss under what conditions can we write

A
i,jk

 = A
i,kj

(5.42)

 
kjijki AA

,,, 

        m
jkmi

m
ikjmk

ji AA
x

A





 ,,

,

        
m
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n
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n
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ijmj

i
k

A
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A
A

x

A
A

x

A

x






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



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



 


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




 








j
mm

ikk
mm

ij
m
ijkmjk

i
jki x

A

x

A

x
A

xx

A
A


















2

,

n
m
jk

n
imm

im
jkn

m
ik

n
mj A

x

A
A 




      (5.43)

Interchaning j and k in (5.43), we get

k
mm

ijj
mm

ik
m
ikjmkj

i
kji x

A

x

A

x
A

xx

A
A


















2

,

n
m
jk

n
imm

im
jkn

m
ij

n
mk A

x

A
A 




      (5.44)
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Hence,

m
ijkm

m
ikjmkjijki x

A
x

AAA 







 ,,

n
n
mk

m
ijn

n
mj

m
ik AA 





 








 n
ij

m
nk

n
ik

m
nj

m
ijk

m
ikjm xx

A

Thus we write

A
i,jk

 - A
i,kj

 = A
m
 Rm

ijk
(5.45)

where

n
ij

m
nk

n
ik

m
nj

m
ijk

m
ikj

m
ijk

xx
R 








 (5.46)

is the Riemann Christoffel thensor and the symbols R
m

ijk
 are called Riemann’s

symbols of the second kind. From (5.46) it follows that

m
ikj

m
ijk RR  (5.47)

we see from (5.45) that the vanishing of the Riemann Christoffel tensor is a

necessary and sufficient condition for mixed covariant derivatives (5.42).

We do make a final note here that the R-C tensor is a measure of the ‘curvature’

of a particular space and its vanishing is a condition for the space to be

Euclidean i.e., the space to be “flat”.

5.6 Covariant curvature tensor

The tensor R
n

n,ijk
 = g

nm
 R

m

ijk
(5.48)

is an associate tensor of the tensor R
m

ijk 
and is a covariant tensor of rank four.

This tensor is called the covariant curvature tensor and the symbols R
nijk

 are

called Riemann’s symbols of the first kind. Substituting the value of R
m

ijk 
from

(5.46) in (5.48) and simplifying, we get the following expression for the tensor

R
nijk

 :

m
ikmnj

m
ijmnknijknikjnijk xx

R 







 ,,,, (5.49)
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On putting the values of the Christoffel symbols of the first kind, we have the

following alternative expression for the covariant curvature tensor































jn

ik
ki

nj

kn

ij

ji
nk

nijk xx

g

xx

g

xx

g

xx

g
R

2222

2

1

m
ik

s
njms

m
ij

s
mkms gg         (5.50)

From this expression, it follows that

R
nijk

 = - R
injk

(5.51)

R
nijk

 = - R
nikj

(5.52)

R
nijk

 = R
jkni

(5.53)

and

R
iijk

 = R
nijj

 = 0 (5.54)

The first two equations (5.51) and (5.52) show that the covariant

curvature tensor is skew-symmetric in the first two indices n and i as well as

in the last two indices j and k.

5.7  Examples:

5.1. Prove that 0, 
i

kj

Solution: l
jk

i
l

i
lk

l
jk

i
ji

kj x





 


 ,

       i
jk

i
jk  0

        = 0

5.2. Prove that

  jp
kqijk

jp
qij AgAg ,,



Solution: By the product rule

  jp
kqij

jp
qkijk

jp
qij AgAgAg ,,,



     jp
kqij Ag ,0

     jp
kqij Ag ,
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5.3. Prove that
m
n

n
m

m x

A

x

A
A








curl

Solution: mnnmm AAA ,,curl 

   
s
nmsm

ns
mnsn

m A
x

A
A

x

A











   m
n

n
m

x

A

x

A








 .

5.4. Express the divergence of a vector A

 in terms of its physical components

for cylindrical coordinates.

Solution : For cylindrical coordinates

x1 = r, x2 = , x3 = z

rgrrg  and

100

00

001
22

The physical components denoted by A(r), A(), A(z) are given by

    22
22

11
11 , rAAgAAAgrA  

  33
33 AAgzA  .

Therefore,

 k
k

k
k Ag

xg
AA





 1

div ,

        
















 zA
z

ArrA
rr




1
.

5.5. Prove that

0 m
kij

m
jki

m
ijk RRR

Solution : Since

n
ij

n
nk

n
ik

m
nj

m
ijk

m
ikj

m
ijk xx

R 








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Cyclic permutation of indices i, j, k gives two more equations:

n
jk

m
ni

n
ji

m
nk

m
jki

m
jik

m
jki xx

R 









and

m
ki

m
nj

n
kj

m
ni

m
kij

m
kji

m
kij xx

R 









Since the Christoffel symbols 
ij

m

 are symmetric in i and j, therefore

adding above three expressions, we get

0 m
kij

m
jki

m
ijk RRR

5.8 Exercise:

5.1. Show that the covariant derivatives of ijk, 
ijk

 and  ijk 
lmn

 vanish.

5.2. In orthogonal coordinate system, prove that

         






















































3

3

21
32

2

13
21

1

32
1

321

2 1

xh

hh

xxh

hh

xxh

hh

xhhh



5.3. In orthogonal coordinate system, prove that

     












132321
321

21
1

div hhA
x

hhA
xhhh

A

  





 213
3 hhA

x

5.4. Prove that

  pk
i
jk

i
pjpk

i
j BABABA ,,,



5.5. Show that

0 pkijpjkipijk RRR
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5.9 Let Us Sum Up

In this block, you learnt about covariant differentiation of various

order of tensors. You have also learnt how to find the expressions of

gradient, divergence, curl and Laplacian in various coordinate systems.

You have also defined the Riemann-Christoffel symbol.

***
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