SELF LEARNING MATERIAL

Master of Arts/Science

MATHEMATICS

COURSE: MATH - 202

TENSOR

BLOCK:1,2,3,4&5

DIRECTORATE OF OPEN AND DISTANCE LEARNING
DIBRUGARH UNIVERSITY
DIBRUGARH -786004



MATHEMATICS

COURSE : MATH - 202

TENSOR

Contributor :
Prof. B. R. Sharma
Department of Mathematics
Dibrugarh University
Editor :

Prof. P. N. Deka
Department of Mathematics
Dibrugarh University

© Copyright by Directorate of Open and Distance Learning, Dibrugarh
University. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system or transmitted, in any form of by any means,

electronic, mechanical, photocopying, recording or otherwise.

Published on behalf of the Directorate of Open and Distance Learning,
Dibrugarh Universityh by the Director, DODL, D.U. and printed at
SUNPRINT, Dibrugarh University Market Complex, Dibrugarh-04.



BLOCK-1

BLOCK-2

BLOCK-3

BLOCK-4

BLOCK-5

MATHEMATICS

COURSE : MATH - 202

TENSOR

: Basic Concepts

: Tensor Algebra

: The Metric Tensor

: Christoffel Symbols

: Covariant Differentiation

Pages

1-13

14-28

29-45

46-58

59-76



BLOCK-1

BASIC CONCEPTS

List of Contents :

1.0 Objectives

1.1 Introduction

1.2 Subscripts and Superscripts

1.3 Summation Convention

1.4 Kronecker Delta, Permutation Symbols and Generalized
Kronecker Delta

1.5 Determinant in Tensor Notation

1.6 Curvilinear Co-ordinates

1.7 Letus Sumup

1.0 : Objectives

After working with this block you will be able to

> Use summation convention to write long mathematical

expressions in short.
Define Kronecker deltas and permutation symbols
Write determinants in tensor notations

Understand about curvilinear coordinates

vV V V VY

Write a vector by using different basis.

1.1 Introduction:

In our discussion here, we have included : summation convention,

definitions and properties of Kronecker delta, permutation symbols,



determinants and curvilinear coordinates. We have discussed certain
examples to make you familiar with the methods of solving problems
related to this unit. We have also suggested interesting activities that you

may attempt as we go along.

1.2 Subscripts and Superscripts:

Let us consider three mutually orthogonal straight lines OX', OX?,
and OX? in the right handed orientation. These lines can determine uniquely
the position of a point, and such lines can be taken as coordinates axes
with O as origin in an Euclidean space of three dimensions. It is often
convenient to denote the coordinate with respect to these axes by x!, x2,
x* instead of x, y, z. Thus, we refer to the coordinates of a point x', x?, x*
as the point x’, where i takes the values 1, 2, 3. It may be noted here that
the numbers 1, 2, 3 written above x are not powers but are used merely

to distinguish the variables.

Following this notation, we can write the equation of a plane in

the form
a1x1+a2x2+a3x3+a=0

where a’s are constants.

The suffixes i and j in A; are called superscript and subscript
respectively. The upper position always denotes superscript and the lower
position denotes subscript. Superscripts must not be confused with
exponents. If doubt arises, an exponent may be distinguished from a
superscript by using a bracket. Thus the square of x’ may be denoted by
(x)?.

Indices play an important role in ‘Tensor Analysis’. These indices

may range over from 1 to any finite natural number » but the physical



meaningful range of the values of the indices is when n< 3. We shall,
unless otherwise stated, restrict the range of the values of the indices to
1, 2, 3 only. Any index occurring only once in a given term is called a free
index. Note that any free index which appears must appear in the same

position in each term of an equation.

1.3 Summation convention:

Any term in which the same index appears twice, once as a
superscript and once as a subscript is known as a dummy index and
stands for the sum of all such terms obtained by giving this index its entire
range of values. This is known as summation convention (introduced by

Einstein).

For illustration, we can write

1 2 3 i
a, ta, +a, as a ,
a'b +a*b,+a’b, as ab,
ayx' +ayx*+a,x’ as aj X

In the last example, the term aj X represents three expressions
fori=1,2,3. A term may have more than one index repeated. Then all

repeated indices are to be summed over, as the following:
axx =a x'x' + a x'x* + a x'x’
+a,xx' + a, xX’x* + a,x’x’
+a,xX°x" + a X% + a X%’
Note that whether the summaton on i is carried out first or on j,

does not matter. It is important to realize that i and j are dummy indices

and may be replaced by any other distinct letters; i.e.



axx =a x’x1=a x°xP
i Pq off

we would never write a’fbj.]_ because the nature of the summations in such
an expression is not well defined; that is, we must denote different index

summations by different letters.

Note also that the summaton convention does not apply to

numerical indices. For instance a x* stands for a single term.

A superscript in the denominator of a term is regarded as a

subscript. Thus,

o' 6v1+6v2 o’

. +—
ox' ox' ax? ax’

Example 1.1

o¢

If ¢ is a function of x',x?,x* prove that d¢ = ?dxi .
X

Solution : Since ¢ is a function of x', x, x*,
therefore,

de¢ = a—¢1dx1 +8—¢2dx2 +a—¢3abc3
ox ox ox

a—¢. dx’

X

=d¢=

Activity 1.1

1. Write the following using summation convention:
1 143 243 343
(1) ax'x’ + ax’x’ + ax’x
1 21 22 23
(ii) A*B, + A¥B, + A”B,

@) g’'g, +g%g, +&7g,



2. Expand the following using the summation convention:
0
O 4,85 @ o)

After studying summation convention, please answer the questions
below. If you are able to answer all the questions, you can move on to
the next section. However, if you are not able to solve all the questions,

you need to revisit this section. Answer to these questions are given at

the end of this unit.

Ex. 1.1 Detect the mistake if we write fori=1,2,3,...,n
xx'=xxt Fxxt L x X

Ex. 1.2 State ‘true’ or ‘false’

a.x=a x'+a x*+a, x’
ij 1 2j 3j

Ex. 1.3 How many expressions are represented by (i) a,x', (ii) a, ¥

1.4 Kronecker delta, Permutation symbols and Generalized

Kronecker delta.

* Kronecker delta : The Kronecker delta is defined as

. |1 when i=j
0, = (1.1)

7|0 wheni#j
In some cases 5} 1s also written as 61.1. or &’.

Thus we have
x = 5;xj, 5l.jx"xj =x'x +xX*xr+x0x)
S!=81+83+8=1+1+1=3,

576" B'=6]B'=B".

Now try to answer the following questions



Ex. 1.4 Simplify 5'6B”

a m
Ex. 1.5 Show that ~ ——=5"
ox
Ex. 1.6 Showthat U _ 5
X. 1. OoOw tna =
ou? ox" !

* Permutation symbols : The permutation symbols € and e’* are

defined by
+1 if i, j,k form an even permutation of 1,2,3
e, =¢" =1—1 if i jk forman odd permutation of 1,2,3
0 if two or moreindices are equal
If follows that
ijk — pjki — Lkij — —
ek = ek = et and €= €= €y (1.2)

* Generalized Kronecker delta : The generalized Kronecker delta,

denoted by & % is defined by

Imn

S =ele, (1.3)

Imn™—

Thatis, 5 /¢ is the product of both the permutation symbols and
its value depends on the values of the permutaion symbols. Hence it will

also take the values 1, -1, 0. It follows that

5M_§W_§W

Imn™ % Imn— % mnl

(1.4)

Consider the result of & 7, . We have

ijk _ il ij2 i3 _ S
5 Imk ™ 5 lm1+ 5 lm2+ 5 Im3™ 5

Im

Thus,

+1 if i# jand ij are even permutations of Im
87 =3-1 ifi# jandij are odd permutations of Im (1.5)
0 ifi=jorl=m



Also we have
Sp=0j=8 ) +063+6 =25, (1.6)

Theoem (1.1) : 5] isrelated to the Kronecker delta as

ij i j i j 5; fn
si=si5i-56/=" "
51 &5

m

(1.7)

Proof: The principle of conservation of indices requires that any free
index, which appears must appear in the same position in each term of an

equation.
By this principle, we have
Sl=adi0+ PS5,
where o, 3 are unkown constants. Since above relation is an indentity,

we have
Sh=ad|0;+B5V0 =l=a
SV=as s +BS6=>-1=p1
Hence,
Si=515,-8'5]

Theorem (1.2): 5§ | 57V

Imn Im >

5 etc. are related as

Sh=si0keo,5hes ol 19
5, &, 9,
—_|sJ J J
_51 5: 5: (19
51 5m 571

Proof : By the principle of conservation of indices we have

ijk
5 Imn

—ad 5+ BS54y S S

mn m “nl Im



where a, 3, v are unknown constants. By using the fact that above relaton
is an identity, we get
55 50485 50 4vslo > l=q
S-S N+ p SNV S =y
S5p=a 8355+ 8, 05+v 8,05 =1=f
Hence we get

S

Imn

_oi ook i ok i ok
_515mn+5m5n1+5n51m'

Using (1.7) we can get (1.9).

Activity 1.2

By using identities (1.7) and (1.9) prove that
(i) SI=67=31=6

ij ik
i 1 ij 1 i
@ Sl=yl=ssh=3

After studying this section please answer the questions below. If

you are able to answer all the questions, you can move on to the next
section. However if you are not able to answer all the questions, you
need to revisit this section.

Ex.1.7: Ifal.j (i,j=1,2,3,...,n)are constant quantities such that a, XX

=0 then show thata ,+a, = 0 for all integral values of /, k=1,2,3,. .., n.

Ex. 1.8: Prove that

. ik
(l) elj eimn

=515k -515"

(i1) e!.jk=§:."575,fe

mnp



1.5 Determinants in tensor notation

Let a/ be an element of a determinant occurring in i row and j*

column and a is the value of the determinant. Thus we write

1 2 3
a  a q
' ' 1 2 3
a:deta/z‘a.J‘: a, a
! ! 2 T2 ...(1.10)
1 2 3
a; da; d

The subscripts indicate rows and the superscripts indicate columns. The
numerical value a is obtained as follows:

N P i j k _ Imn_1 2 3
a—|a,.|—e,.jka,.aza3 =e"a,a,a, ... (L.11)

The summation on i, j, k or [, m, n gives 3* =27 terms of which 21 terms
involve repeteated indices and therefore are zero whereas the non-
vanishing six terms are the same as those in (1.10) which we get by
expanding the determinant.

The theorems concerning the interchange of rows and columns

are given as
- i ik
A =Cpd,d,; a, (1.12)

pqr

— ok 4P L4 o7
ae™ =e"af aj a (1.13)

when p, q, r are 1, 2, 3 then the equations (1.12) and (1.13) reduce to
(1.11). When two adjacent indices are interchanged €. changes its sign,
hence we get

i ok PN ik
e,a,a,a, =e,a,a,a, =—e;dd.d,

The cofactor of an element a / in a determinant is defined as its

coefficient in the expansion of the determinant and is denoted by 4.

Thus we have the relation

a'Al =ad'=a,A, (1.14)
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It the elements @/ of the determinant a = ‘aij ‘ are functions of x,

then the derivative of a with respect to x is given as follows:

%:%( "“ajal a,f)
) ! da’®
= %a?azjt u aa +%a;a2
dx 7 dx dx
L d 2 _ 3
_da; g G gy G g
dx dx dx
da da; .
—=—"1y4 ... (1.15
dx dx ( )

Thus, the derivative of a determinant is the sum of the product of

the derivative of each element and the cofactor of that element.

Let us now consider the product of two determenants
la/[[/|= /|

Inthiscase ¢/ = a/b’

1.6 Curvilinear Coordinates:

Let (x, y, z) be the carlesian coordinates of any point P in three
dimensional space. Now, we assume that these coordinates can be
expressed in terms of three independent single valued continuous
differentiable scalar point functions u, u,, u, such that

X=X (u,, uy, u,), Y=Ywu,u,u), Z=27Z(u,u,, u,)

... (1.16)

It is also assumed that the functions possess continuous partial
derivative of " order. Then these functions can be solved in terms of x,

v, z that is

The surfaces u, = C, u, = C,, u, = C, where C, C,, C, are
constant, are the respective level surfaces of three functions. It is assumed

that these three level surfaces do not coincide or intersect in a common



curve. So, for each set of values that may be assigned to C, C,, C,,
there is just one point P at which the three level surfaces meeti.e., a
unique point is defined for a set of values given to u, u,, u,. Then
(u,, u,, u,) may be used as coordinates in place of (x, y, z) to level points
of space. They are called curvilinear coordinates (since the coordinate

lines are curved).

These level surfaces are called as coordinate surfaces, through
the point P and their three curves of intersection are called coordinate
curves and the tangents at P to the coordinate curves are the coordinates
axes. The directions of the axes vary from point to point. Along
u, - coordinate line, the other two parameters u,, u, remain constant and

u, only varies. Similar is the case for other two coordinate lines.

It is worth noting that a condition that the three level surfaces of
the u’s through any point P meet at no other point near P is that the

normals to the level surfaces are non-coplanar at P.
Let 7 =xi+yj+z IAc, then on substituting x, y, z from equation

(1.16) we have . = , (U, U, U,).

Thus the differential at the point P is given by

> or ., or, or
dr =—-du +—du, +—du 1.18
u, ' Ou, ° Ou, ° (1.18)
If u, and u, are kept constant, so that du, = du, = 0 and if
du> 0 then the differential d  is the direction of the tangent to the coordinate
line (in the sense of u, increasing). Therefore, the tangent to the u, - coordinate

curve is parallel to % . Similar results apply for the other coordinate curves,

1
andsoif ¢, e,, e, are tangent vectors not necesarily of unit length in the

directions of u , u,, u, increasing respective, then

or Z or Z or Z 119
-~ =€, _—=€2, —_—=e¢€3 .
ou, ou, ou, (1.19)

These ¢, ¢,, ¢, are known as fundamental base vectors.

11
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On taking magnitudes in (1.19), we have

N
€1

:hl:_’

On substituting from (1.19) in (1.18) we have
dr = du, e+ du, ert du, es (121)

When using curvilinear coordinates, it is advisable to introduce,

along with the fundamental base vectors Zl, e , ¢» the reciprocal base

. > o
vectors é!, €2, é° connected with the fundamental base vectors e, e:,
5
es by the formulas

> o

en‘ek:5ﬁ (1'22)
where & are the Kronecker deltas.

To do this, it is sufficient to put

- - - - - >

—>1_ 62X€3 —>2_e3><el —>3_ elxez
e - 5 e - 5 -
g g

where g=g¢ .(ezx e3j = [el e, e3}
From (1.22) it also follows that

where G = ¢! ,(ezxe3j:{e‘ e’ ei (1.24)

. (1.23)

Q

Thus Zl is perpendicular to the (Zz, 23) plane.

If the coordinate system is orthogonal, it is obvious (see (1.23)
and (1.24)) that the base vectors Zn and Z” coincide in directions, but

their magnitudes are in general different.

In case of curvilinear coordinate system u , u,, u, ,the vectors
- =d e d . . .
e, e2, e tangential to the coordinate curves u , u,, u, respectively are
. . - - - . . .
taken as the basis vectors. The basis ei, e», es issaid to be local since

in general it varies from point to point. It should be noted that in general
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the basis vectors are neither perpendicular to each other nor of unit length.

The reciprocal vectors ¢!, €2, €3 can be taken as another basis. So, any
. - - —

vector can be represented in terms of e, ez, es as well as é!, &2, é°.

Thus we see that two sets of basis can be used to represent a vector.

Answers:
Activity 1.1
1.1 () a x' x’
(ii) A B,
i) g'g,
1.2. (@) A, B*+A4, B?»+A4,B”
ORI Ny I Ny IRCE Ny
Answer of Questions:
1.1 xx'=xx'+xx*+...+tonterms
1.2 True

1.3 @)1, ()9

1.4  B*
m P m
ox™ Ou _ ox _sn

1.5
ou’” ox" ox" "

1.7 Let Us Sum Up

In this block you have learnt about subscripts, superscripts and
the summation convention using which it becomes possible to write in
short the long expressions consisting of sum of similar terms. You have
also learnt about Kronecker delta, Permutation symbols, Generalized
Kronecker delta and their properties. You have also seen how a
determinant can be written in short in tensor notation. You have also
been introduced with curvilinear coordinates. In the latter part of this self
learning material you will need to use these concepts.
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BLOCK -2

TENSOR ALGEBRA

List of Contents :

2.0

2.1

2.2

23

24

2.5

2.6

2.7

2.8

2.9

2.10

Objectives

Introduction

Scalars, Vectors and Tensors
Contravariant and Covariant Vectors
Tensors of Rank Two

Relative and Absolute Tensors
Symmetric and Skew-Symmetric Tensors
Operation on Tensors

Quotient Rule

Exercise

Let Us Sum Up



2.0 : Objectives

After working with this block you will be able to

» define various types of tensors

» perform various algebraic operations on tensors

» check up whether a given quantity is a tensor or not

2.1 Introduction :

In our discussion here we have included : the definitions of various
types of tensors, algebraic operations and their properties, quotient rule
and its applications. We have discussed certain examples also to make

you familiar with various operations on tensors.

2.2 Scalars, vectors and tensors:

A scalar is a quantity that can be specified in any coordinate
system by just one number, whereas the specification of a vector requires
three numbers, namely its components with respect to some basis in three
dimensional space. Both scalars and vectors are special cases of a more
general concept called a tensor (of order n) whose specification in any
given coordinate system requires 3” numbers, called the components of
the tensor. More specifically a tensor is defined as a system of quantities
or functions whose components obey certain laws of transformation of
coordinates from one system to the other. The key proeperty of a tensor
is the transformation law of its components. These components are

functions of positions.

Physical laws must be independent of any particular coordinate

system used in describing them mathematically if they are to be valid.

15
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Since tensors have useful properties that are independent of coordinate

system hence they are used to represent various fundamental laws of

physics, engineering, science and mathematics.

2.3 Contravariant and Covaraint vectors :

If a set of n functions A’ of the coordinates x* transforms into a

set of n functions 4’ of the coordinates X'by the law

A =%A" 2.1)

we say that the functions A‘are the components of a contravariant

vector in X - system and A* are the components of a contravariant vector

in x - system.

If we multiply relations (2.1) by ai_l , we get
X
iy L SCL S St
0x ox Ox
ox’ —i
Hence A = i_l.A ... (2.2)
ox
Note : (1) Above relation is called the transformation law of a

contravariant vector. Instead of saying that 4!, 42, . ..
are the components of a contravariant vector, we simply

say that 4’ is a contravariant vector.
(1) A contravariant vector is indicated by superscripts.

(iit) By the coordinate transformation we do not get a new

vector (tensor) but the components of the same vector

(tensor) are changed.



Example 2.1 : Show that the quantities dx’ (the infinitesimal displacement)

are contravariant vectors.

Solution : Letx?= x7(x', x%, ... x") then
- ox ox’
dx’ = xl dx'! +i2dx2 +... to Nterms
ox ox
- ox’ .
=dx’ =idx’

which shows that the quantities dx' form contravariant vector.

If a set of n functions Al. of the coordinates x’ transforms into a

set of n functions A4 ;of the coordinates x'by the law

di=— 4, (2.3)

we say that the functions A are the components of a covariant vector in
x' system and 4 . are the covariant components of the same vector in x

“isystem.
The equation (2.3) can also be put in the form

axp —

4,=—=4i 2.4
o (2.4)

P

Note : A covariant vector is indicated by subscripts.

Definition 2.1 : If a function ¢ of the coordinates x’ transform into a
function d_> of the coordinates x?, in such a way that ¢ = d_> then ¢ is

called a scalar.
Example 2.2

Let ¢ be a scalar function, that is,

o(v)=ox")

17
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0p _0p _0¢ o'

Th —
e ox’  ox’

S ox g

0 — 0 :
If we denote a?p by 4, and 8_¢’ by 4, then above equation
X X

takes the form

ZP = Ai afp

Ox

. .0 . .
which shows that 4. i.e. 8_¢’ transforms like a covariant vector.
x

2.4 : Tensors of rank two

If a set of N? functions A7 of the coordinates system x’ transforms

into a set of M2 functions 47 of another coordinate system ¥ by the law
—pg _0x" Ox
Ry (2.4.1)

ox' ox’

we say that the functions 47 are the contravariant components of a tensor

of order two in the x - system and 4”¢are the contravariant componets

of the same tensor in the X - system.

Ifa set of N functions A; of'the coordinate system x’ transforms into

aset of N functions 4, of another coordinate system 1.” by the law

_ .Y J
A5 _Ox 0Ox

i
J

o ox
we say that the functions A; are the components of a mixed tensor

of order (1+1) in the x - system and Z;’ are the components of the same

tensor in the X - system.

Exasmple 2.3: Show that Kronecker delta is a mixed tensor of order 2.



Solution : In the X - system, by definition

ox' Ox,

o ox, ’

which is the law of transformation of a mixed tensor of rank two. Hence

Kronecker delta is a mixed tensor of rank two.

2.5 : Relative and Absolute tensors

A tensor A" is called a relative tensor of weight  if its

components transform according to the equation

Z:{l...zM _ a_)ﬁw 8;‘1‘ o 8;‘”’ ' axrl N axr‘v .
] ! ax 6x”‘ axpM a;sl a;? .o Ty
where J = 3 is the Jacobian of the transformation. If w =0 the tensor

X
is called absolute and is the type of tensors which we have defined above.

If w=1 the relative tensor is of weight one.
Activity 2.1

Define a relative tensor of order (2 +1) and weight 2.

2.6 : Symmetric and Skew Symmetric Tensors

A tensor is called symmetric with respect to two contravariant or

two covariant indices if its components remain unaltered upon interchange

19
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of the indices. Thus if 4;)" = 47" the tensor is symmetric in 7 and p. If a
tensor is symmetric with respect to any two contravariant and any two

covariant indices, it is called symmetric.

A tensor is called skew-symmetric with respect to two
contravariant or two covariant indices if its components change sign upon
interchange of the indices. Thus if AZZ" = —A;”;" the tensor is said to be
skew-symmetric in / and m. If a tensor is skew-symmetric with respect
to any two contravariant and any two covariant indices it is called skew-

symmetric.

2.7 : Operation on Tensors:

Addition : The sum of two or more tensors of the same rank and

type is also a tensor of the same rank and type. Let 4’ and B/ be two

mixed tensor of order (2+1) then

J— I 7 k
A7 = g Ox_ Ox X
ox' ox' pyx’
B gy Ox Ox O
ox'" ox' pyx

Adding we get

o o o

ox' ox’ 'a;

A7 +BY = (A,’j + B_j.k)

Thus C? =4+ B/

J

is mixed tensor of order (2+1).

Subtraction : The difference of two tensors of the same rank and type is

also a tensor of the same rank and type. Thus if 4 and B/ are tensors, then

D! = A7 — B/ isalso atensor.



Outer product : The product of two tensors is a tensor whose rank is
the sum of the ranks of the given tensors. This product which involves
ordinary multiplication of the components of the tensor is called the outer

product.
For example :
C/] = 4,B’

is the product of 4; and B'. To prove this, let the transformation laws of

A; and B’ be
Aﬁ e ox" ax
ox' 8x
A s
ox’

Then, on taking outer product, we find that

k -V
CﬁV—AﬁB AB,@x 6x 6x
ox' ax” o’
Ep _ 9 ox ax ox*
ox' ox ox”

is a tensor of order 2 +1.

Contraction: If one contravariant and one convariant index of a tensor
are set equal, the result indicates that a summation over the equal indices
is to be taken according to the summation convention. This resulting sum
is a tensor of rank two less than that of the original tensor. The process is

called contraction.

The contraction of a tensor reduces the rank of the tensor by

two, one in contraviant and one in covariant.

21
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Inner Product : The inner product of two tensors is their outer product

followed by contraction.

For example, if 4'and B_are two first order tensors then C; = 4'B,

is their inner product.

The operations of addition, multiplication, etc. of relative tensors

are the same as those of absolute tensors.

2.8 : Quotient rule

Consider a set of n* functions 4 (ijk) with the indices i, j, k each
ranging over 1, 2, . . ., n. Although the set of functions A(i, j, k) has the
right number of components, we know do not know whether it is tensor
or not. Now, suppose that we something about the nature of the product
of 4 (i, j, k) with an arbitrary tensor. Then there is a theorem which

enables us to establish whether 4 (7, /, k) is a tensor without going to the

trouble of determining the law of transformation directly.

Theorem 2.8.1 : If the inner product of a quantity X with an arbitrary

tensor is a tensor then X'is also a tensor.

We will prove the above theorem for the case of a tensor of

order three.

Let 4 (i, j, k) be a set of n® functions, B* be an arbitrary
contravariant tensor of order one. Let us suppose that the product

A (i, ], k) B¥is known to yield a tensor of the type C¥1i.e.
A (i, ], k) B¥=CV
then we can prove that 4 (i, j, k) is a tensor of the type AZ

Since C7 is a contravariant tensor of the second order therefore
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Eﬁq — Clji 6)_Cq
ox' ox’

-p -q
" = i j k)BT 0%
ox' ox’

—C" = Al j k)_’£ ox" ox*
ox' ox’ 5y

However
" = A(pgr)B
Comparing above two equations we get

— = . =r Ox Ox' oxF
A(pgr)B" = Ali jk) éaﬁf a)fr
X

o P AT 4 k|
= A(pqr)—A(ijk)ai.ax. A
ox' ox’ px

Now B’ is arbitrary, hence the quantity within the bracket must vanish.
Therefore,

which is the law of transformation of the tensor of the type A;" . Hence

A (ij k) is a tensor of the type A4 .

Examples :

Ex. 2.8.1: The components of a contravariant vector in x-coordinate

system are 5 and 2. Obtain its components in the X - coordinate system

if ¥' = 6(x')? and X2= 4(x')? + 3(x?)

Solution : By the transformation law of a contravariant vector, we have
- ox”

A = Ai—.
ox'
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—1 —1
A A=A 2O
ox ox

= 5(12x')+2(0) = 60x
—2 —2
A= 0
ox ox
=5 (8x") +2 (6x?)
=40x'+ 12 x2.
Ex. 2.8.2 : Show that the velocity of a fluid at any point is a contravariant

tensor of rank one.
Solution : Let the coordinates of a point in the fluid be x(¢) at any time
t. Then velocity V' is given by

.dx
Vi =—
dt

Let the coordinates be transformed to new coordinates x . In the
transformed coordinates the velocity 1" is given by
~« _dx’
y =—.
dt

which is the law of transformation of a contravariant tensor of rank one.

Hence V' is a contravariant tensor of rank one.

Ex. 2.8.3: Prove that Kronecker delta is a mixed tensor of rank two.

Solution : In the X - system by definition




ox' oy’

(by chain rule)

o ox”

5

J

o o

or =5 2
ox' oy’

J

which is the law of transformation of a mixed tensor of rank two. Hence

Kronecker delta is a mixed tensor of rank two.

—i

—i ; —a a d
Ex.2.84: IfA =4" Sia, show that 4' = 4" -
X

—a

ox

Solution : Since A = A° ox
ox”
i ok oAk
~ 8); _ ya 8xa 8{[
Ox ox ox

— ok k
=4 ai_izA“ Ox
Ox ox”

Ex.2.8.5: Show that every tensor can be expressed as the sum of two
tensors, one of which is symmetric and the other skew-symmetric in a
pair of covariant or contravariant indices.

Solution : Let A7 be an arbitrary contravariant tensor of rank two. Now

A = %(A’ff T Aﬁ)+%(Aff — 4"

25
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But B’ = %(Aij + Aji): B’ is symmetric,

and C7= %(A"j + Aﬁ): —C’" is skew-symmetric.

.. AY can be expressed as the sum of a symmetric and a skew symmetric

tensor.

Ex. 2.8.6: Prove that the equations of transformation of components of

a contravariant vector possess the group property (or transitive property).

Solution : Let 4’ and A’ be the components of a contravariant vector in
the coordinate systems x’ and x’ respectively. If the coordinate system

x' are transformed to the coordinate system X' then the component A'are

connected with components A’ by the relation

1% 2.8.1)
ox'
k
Multiplying (2.8.1) by 6): , and summing for i, we get
ox
—i k ) koo )
A8 _wE st
ox ox Ox’ !
—i oxF
ie. A=4T (2.8.2)
ox

The relation (2.8.2) is the law of transformation for the components

of'a contravariant vector where the coordinate system x'are transformed

to the coordinate system x'.

Comparing (2.8.1) and (2.8.2) we see that the relation between

two sets of components is reciprocal one.

Let A' be the components of the same vector in the third co-

ordinate system x . Ifthe coordinates ¥ are transformed to the coordinates

=i

x then the law of transformation be

=) — a=i
A=4Z (2.8.9)
Ox




_ —J
Substituting the value of A =4 Zik from (2.8.1)in (2.8.9) we get
X

ox ox

A =
ox’ o'

o, A=4" 6_xk
Ox

This relation is of the same form as the law of transformation for

the components of a covariant vector when the coordiante system x’ are

=i

transformed to the coordinate system x . Consequently the equations of

transformation of components of a contravariant vector possess the group

property (or transitive property).

2.9 Exercise for Unit-11:

2.1. If all the components of a tensor vanish in one coordinate system,
then show that they necessarily vanish in all other admissible coordinate

systems.

2.2. Prove that the equations of transformation of components of a

covariant vector possess the group property (or transitive property).

2.3.If AJ’ﬁk and B/, are components of a tensor then prove that their

sum and difference are also tensors.

2.4. Show that the outer product of two contravariant vectors is

contravariant tensor of second order.
2.5. Prove that contraction of a mixed tensor yields a scalar invariant.

2.6. If AY are components of a contravariant tensor of order two and
B, are components of a covariant vector then prove that 4’B,_ are
components of a tensor of order three but 47B, are components of a

tensor of order one.

27
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2.7.1f the sum A'B, is an invariant and if the quantities 4’ are the
components of an arbitrary contravariant vector then prove that

quantities B, are the components of a covariant vector.

2.8. State quotient law of tensors and use it to prove that Kronecker

delta &’ are components of mixed tensor of rank two.

29.1f ¢ = al.inAf then show that ¢ can always be written as ¢ =
b, A4 where b, is symmetric.

2.10. Show that the contraction of the outer product of the tensors 4,

and Bf is an invariant.

2.11. A covariant tensor of order one has components x! x2, 2x° -
(x?)?, x* x* in cartesian coordinates x', x?, x*. Find its covariant

components in cylindrical coordinates.
2.12. The components of a contravariant tensor in the x - system are
Al =4, A =4?"=0and 42 ="1.
Find its components in the X- system, where

;l = 4(x1)2 - 7(x2)2

2 1 2
x =4x —-5x"

2.10 Let Us Sum Up :

In this block, you have been introduced with scalars, vectors and
different types of tensors. You have also learnt about the operations such
as addition, subtraction, outer product, contration, inner product of
various types of tensors. You have also learnt about quotient rule using
which it becomes possible to check-up whether a given quantity is a

vector or not.



BLOCK -3
THE METRIC TENSOR
List of Contents :
3.0 Objective
3.1 Introduction
3.2 The Metric Tensor
3.3 Associated Tensors
3.4 Length of a Curve
3.5 Magnitude of a Vector
3.6 Angle Between Two Vectors
3.7 Vector Algebra in Tensor Notation
3.8 Physical Components of a Tensor
3.9 Examples
3.10 Exercise
3.11 Let Us Sum Up

3.0 Objective

After working with this block you will be able to

> find the base vectors in any coordinate system
> find the metric tensor in any curvilinear coordinate system
> find the physical components of a tensor

3.1 Introduction

In our discussion here we have included the difinition of metric
tensors and derivation of the expressions for the length of a curve,
magnititude of a vector, angle between two vectors and vector algebra is

tensor notation Expressions for physical components of various order

tensors will also be derived.
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3.2 The Metric Tensor

Consider two infinitely closed points A(x', x?, x*) and
Al(x! + dx', x> + dx?, x* + dx*) in space. These points define an
infinitesimal vector d7, which is independent of the choice of co-ordinate
ssytem. Let the length of the vector d7” be denoted by ds. If € defines

the unit vector directed along the straight line 44, then
dr =dsé. (3.1

From the point 4 (x!, x?, x*) we draw co-ordinate lines which do

not lie in the same plane and are not, in general, orthogonal. Let € denote

a system of covariant base vectors, not of unit length, directed along the

tangents to the coordinate lines; then

dF = dx'e,, dF, =dve, dF, =dx'e (3.2)

3 3

where d7’ |, d7 ,, d7 ;are infinitesimal vectors defining a parallelopiped

whose diagonal is the vector d7, i.e.,

diP = dsé = dx"é =dx'é +dx’é, + dx’e, (3.3)
> ar
where e; = P (3.4)

From this, according to the rules for scalar multiplication of

vectors, we find

ds® = (dx” Zn dx" ij =g, dx"dx" (3.5)

where

. =(Zn.2kj, (nk=1,2,3) (3.6)

The coefficient g , in the quadratic form of the differentials dx”

as seen from (3.6) form of symmetric matrix (g , = g, ). Thus, by the

quotientrule, g  are the components of a covariant tensor, called the

covariant metric tensor.



We have already defined (in Unit-I) the reciprocal base vectors

¢ by the formulas

:gnm - an 6];1
:gnm - Cnm

Consequently (3.8) becomes

- >m
e}’l g}'lme

Hence
N NI 2 .3
er=g,¢e tg,e +tg,¢
- >l -2 -3
ex=g,¢e tg8pe +tg,¢e
N N 2 .3
€3 =g ¢ +t8y¢e tg5¢e

From (3.10), by Crammer’s rule, we find

k

>"  cofactorof g,
e = e
g
where
8 8 8

g=181 8» 8
831 8n 83

" =g”k2,,,(g;t0)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

31
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Taking the scalar multiplication of (3.11) with &/,

we have
el.et=gelen
= ¢l.ek= g 82
Lelek =gk ... (3.13)
.  cofactor of g,
From (3.11), we have &" = : .. (3.14)

g

From (3.13) we see that

gt =2i.gk = 2k i = gh

Hence, g/ are symmetric. Substituting the value of e from (3.11) in (3.7)
we get
¢, (g"e,) =3,

=g g"=3 (3.15)

From this we conclude that g/* are the components of a

contravariant tensor. The tensor g/* is called the inverse metric tensor or

Contravatiant metric tensor. The components g/* of this tensor can be

calculated by means of (3.14).

3.3 Associated Tensors

If A* are components of a contravariant vector, then its inner

product with g;le., gl.]Aj are components of a contravariant vector which
is called associate to 4' by means of fundamental tensor. It is usually

denoted by A'. Thus
A,=g A (3.16)
Similarly if 4, are components of a covariant vector, then g” A4,

are components of a contravariant vector which is called associated to

A, and is denoted by 4". Thus
A'=gV A4 (3.17)
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Hence, 4, and 4" may conveniently be considered as different,

5
respectively covariant and contravariant components of the same vector A.

The superscript of any tensor can be lowered by means of the
metric tensor g, This process of obtaining the associate tensor by

composition with one of the fundamental tensor is called lowering the

superscript or raising the subscript.

3.4 Length of a Curve

If ds is the length of an infinitesimal vector d7 then by (3.5) we have

ds* = g, dx'dx’
ie. ds = || g, dx'dx’
Consequently,
as_ [ al -
a7 ar '

Let s be the length of the arc goining the points which corresponds

to the values 7z, and ¢, of the parameter # then

f dx' dx’
s = T 3.19
Ito 87 dr (3-19)

3.5 Magnitude of a Vector

If 4 is a vector then it can be expressed as
4d=4¢ (3.20)
Now, |A]=A4.4=(472).(42)
=Ad g

i

A =g AL (3.21)
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The vector A can also be written as
A =4, e" (3.22)
Consequently

—

.14

=48’ 44, (3.23)

Using (3.20) and (3.22)

AP=A.4=(4'2).(4,)

= Aidd! =44,

A= 44 (3.24)

Hence

A= g, a4 = [g" 44, =J44

3.6 Angle Between Two Vectors

We know that if 0 be the angle between two vectors A and B then

A.B
Cost = s
Al|B
(Ai e .(Bj e,)
A||B
A'B’
Cos@ = &y

Jen A4 BB (32



3.7 Vector Algebra in Tensor Notation

If4 and B be two vectors then their scalar product can also written as
AB =g AB=AB=AB (3.27)
From this we obtain a condition for orthogonality of two vectors A and B:
g, A =g'A4A =AB =A4AB =0 (3.28)
The vectors product of Aand Bis given by
B =(4¢) x (Bfé’j) =A'B (e, x é’j)
=A'B(ge,, é,)
=ge, AB é, (3.29)
where g=[¢' &2 &?].
The vector product of Aand B can also be written as
AxB =Ge*AB2,.
where G=[¢é' é?¢é?].

IfA , Band C are three vectors then the scalar triple product of
these vectors is given as

A.BxC=A.(BxC)

afemce)

=('é)ge, BCE

jkl

U
1
SN\
ool
al
I
VR
N
oL

=Aige, BC*
=ge, A B C* (3.31)

Scalar triple product (also known as box product) can also be
written as

- o5 >

[A BC1=(42).(B,¢/ x C,8")

35
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=(4,e).(G&" B, c.e)
=G 4, B.C,
= Ge* 4, B.C, (3.32)
Here we have used the notation

> o

g=[é e ,e]Jand G=[e'é?¢&’]

g 81 81
1.€. 8=181 8» &8
831 813 83

11 12 13

g
and G=|g" g2 g
g

31 32 33
g &

3.8 Physical Components of a Tensor

The base vectors € and ¢'are in general not unit vectors. In fact,

their lengths are
‘éi‘ =g éi‘ =,/g" ,inot summed
Since we know that
= is —i
v=v'e =ve
3 - >
N
; e i e
therefore, V= Z V& = Z Vg ——=
i=1 8i =l g"

Then since e, =——— and &' =——
11
8ii g

are unit vectors, all

components V' /g, and v,;4/g" (i not summed) will have the same physical



. -
dimensions. It is seen that v,/ g, are the component of v resolved in the
direction of unit vectors e; which are tangent to the coordinate lines; and
that v,4/g" are the components of v resolved in the direction of unit

vectors ¢ which are perpendicular to the coordinate planes. The

components

v \g, and vl.\/? , inotsummed,

are called the physical components of the vector v . They do not transform

according to the tensor transformation law and are not components of

tensors.

The physical components v'y/g. and v;4/g" , (i not summed),

are denoted by v?and v, respectively.

The physical components of second order tensor will be defined
in terms of the physical components of a mixed tensor, and the physical
components of a mixed tensor will be defined from a tensor equation
involving a mixed tensor and contravariant vectors. For example, the

inner product of a second order mixed tensor and contravariant vector is

given by
v=T n (3.34)

Substituting the physical components of 1’ and n/, we get

> 1

&i =l g

3
or

J

(1 — gu Tl

where T ) ="17—
\/7 J
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is the physical component corresponding to 7 j’ Hence, the tensorial

components of a mixed tensor are related to its physical components by

i i mii
T =" T (335)

where i, j are free indices and are not summed.
The physical components of other second order tensors are related

toT 8 by relations

3
TV =g"T/ = z Skk. T(S{’))g’k (3.36)

3 3
T/ =g, T'g" =2 Y g [SE T e (337)

3
g ..
T,=g,Tf =Y g |-L 1 (3.38)
k=1

kk

In orthogonal coordinates, a basis €, and its reciprocal &'are

identical in directions and the unit base vectors are given by

where s, =,/g, ,inot summed.

In this case v = v, and hence we denote the physical

components of a vector v by v(i).

Thus,

V(i)zvi 8i» Vo) =V gii

1 1



where i is not to be summed.

39

(3.39)

The physical components of a second order tensor 7"are denoted

in orthogonal coordinates by 7(ij).

The relations (3.35) to (3.38) reduce to

ch
Tf;jT(lJ)

- 303 &T(
j Z Z ik (1
k=1 =1 8k
g“ ;
=g, g—'ZTé?g”

h. 1
—h? L1~
i ()

U
1/ =251()
J
1 =—1(j)
hh,

(3.40)

(3.41)

(3.42)

(3.43)

3.9 Examples:

3.1 : Find the metric of a Euclidean space referred to

(a) Cartesian Coordinates

(b) Cylindrical Coordinates
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Solution:
(a) In cartesian coordinates we know that

— S N A N A
er=i, ex=j, e3=k

-> - N

Lgy=eei=i.i=1

Slmllarly g22:g23: 1’ g13:g31 :g21 :g23:g32: O

Therefore, the expression for the metric
ds* = g, dx' dv

becomes
ds* = dx* + dy* + dz?

This is the metric referred to cartesian coordinates.

(b) The cartesian coordinates x, y, z and cylindrical coordinates

r, 0, z are related by
x=rcos0, y=rsin0, z=z
Let R denote the position vector of a point P.

Then
R =xf+yf+z/Ac

l

R =rcosOi +rsin® ] + zk

-  OR
€r =———
or

= e,=cosfi +sinfj

> OR " "
eeza—z—r sind i +r cof) j
- R
ez—a =k

T
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-> -

g, =e,.e,=cos’ @ +sin* 0 =1

Sy =€o.¢o=(—rsin@) +(r cosd ) =r?

e,.eg =—rsinf cos@ +r cos@sinf =0

)
3
I

- >

gy, =e€v.e:=0, g_=0
Therefore, the expression for the metric
ds* = g, dx' dv
becomes
ds*=g dr*+g, do*+g_ dz>+2g drd +2g, dbdz+2g dzdr
=ds’ =dr’ +r’d0*+dz’
This is the metric referred to cylindrical coordinates.
3.2 : Calculate the fundamental tensor g; and the conjugate metric tensor
for the given metric
ds* = 2(dx")* + 3(dx*)* + 5(dx*)* + 4dx'dx* - 6dx* dx* + 2dx' dx’.
Solution: The line element can be written as
ds? = 2(dx")? + 2dx'dx* + dx'dx?
+ 2dx*dx" + 3(dx*)* - 3dx*dx’
+ dx3dx! - 3dx*dx* + 5(dx?)?

Thus metric tensor is given by

2 2 1
g, =2 3 -3
1 -3 5
L g=lg|=2(15-9)+2(-3-10)+ 1 (-6 - 3)
=12-26-9=-23

The conjugate metric tensor g7 is defined by

i _ Cofactor of g; in ‘ gij‘
g

g



n__6 gn=43 gn:_9
-23° -23° -23

21 —13 22 9 23 8

3 =9 »_ 8 3_ 2
§ 7% & T 8 T
Therefore,
o 13 9]
23 23 23
7% 23 3
9 -8 =2
23 23 23]

3.3 : Prove that /g is a relative tensor of weight one.
Solution: We know that

g8 &1 &
=180 &2 &
831 8n &3

and also that the elements of the determinant g satisfy
- ox' ox’

8, =8 = =
Pq ij axp axq

Taking determinant of both sides we get
ox' ||ox’

-p - q
ox

:>§=J2g

=g =J"g
which shows that /g is a relative tensor of weight one.

3.4 : Find the physical components of velocity of a particle in spherical

coordinates.
Solution : We know that the velocity of a particle at any point is a

contravariant tensor of order one.
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The contravariant components of the velocity are

& _dr & _do df _dp
dt dt’ dt dt’ dr dt

Therefore, the physical components of the velocity are
N e
gll dt grr dt dt
dx’ do  do
VEn 7 V8o o r;

dx’ d¢ . d¢
1[g33E:1[g¢¢E:rSIHGE

(Here we have used theresults g_=1, 8= 1 8= r? sin0)
3.5 : Prove that g is a relative tensor of weight two.

Solution : The elements of the determinant g given by g, transform

according to
o g A
ey o'
Taking determinant of both sides, we get
— ox”| |ox?
8§=8 =/ =
ox | |0x
g=gJ’

which shows that g is a relative tensor of weight two.

3.10 Exercise for Unit III

3.1. Prove that for an orthogonal coordinate system,
8= 8; =8, =0
3.2. Prove that for an orthogonal coordinate system

1 1 1

=1 827" 833733

3.3. In a two dimensional space, find the quantities g7, if g, =itJ.
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3.4. Find g g’ and g corresponding to the metric

ds* = 5(dx")?* + 3(dx?)? + 4(dx?®)? - 6dx! dx* + 4dx?dx’
3.5.1f4 = gjkA" then prove that 4* = g 4.
3.6. Find the metric of an Euclidean space referred to spherical coordinates.

3.7. Corresponding to the metric ds? = (dx')? + 2(dx?)* + 3(dx*)? - 8dx?

dx? evaluate g and g”.
3.8. Find the square of the element of arc in cyclindrical coordinates.

3.9. Prove that a cylindrical coordinate system is orthogonal.

3.10. Prove that
i) detfg,] =

.. ) 1
()  det[g=
3.11. Bipolar coordinates (0,0) in two dimensions are related to Cartesian
coordinates (x,y) by

‘o sinh &
cosh @ + cos ¢ ’

sin &

rE cosh @ + cos ¢

(a) Find the covariant base vectors € and e,,.

(b) Are the axes of the curvilinear coordinate system (0, ¢)
orthogonal?
(c) Calculate the covariant metric tensor g
3.12. For the transformation:
X =3x 4 a? 424
X o=x a0+ 3%
X =2x =3+ 2
find the following:
(1) The Jacobian of transformation and explicitly write out the

inverse transformation.



(ii) The covariant base vectors €.

(iii) Contravariant base vectors ¢&’.
' i i

(iv) metric tensors g, and g7,

(v) The expression for the line element.

. . — —2 —3 ey
Here (x', x?, x*) are Cartesian coordinates and (x X, X )are curvilinear

coordinates.

3.13. For the transformation of coordinates

x=ylty 4y

y=y-y

z=2y%-3y?
find the

(1) covaraint base vectors
(i1) contravariant base vectors

(iii) metric tensors g and g”.
3.14. Calculate the metric tensor g, for the curvilinear coordinates
0% 7)) if

x= yl y2 y3

y=y'y1-(7f

- Z%[(yl)z —(yz)z]'

3.11: Let Us Sum Up

In this block you have learnt how to find the find base vectors and
metric tensor is various coordinate system. You have also learnt how to
write the expressions for the length of a vector, angle between two vectors
and the vector algebra in tensor notation. You have also learnt the method

of finding the physical components of different types of tensors.
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BLOCK - 4
CHRISTOFFEL SYMBOLS
List of Contents :
4.0 Objective
4.1 Introduction
4.2 Differentiation of Base Vectors
4.3 Christoffel Symbols in Terms of Metric Tensors
4.4 Christoffel Symbols in Orthogonal Coordinate
Systems
4.5 Examples
4.6 Exercise
4.7 Let Us Sum Up

4.0 : Objective

After working with this block you will be able to

>
>

differentiate the base vectors

find Christoffel symbols of the first kind and second kind

in any coordinate system.

find Christoffel symbols in orthogonal coordinate system.

4.1 Introduction :

In our discussion here we have included the definitions of

Christoffel symbols of the first kind and the second kind and the methods

to derive them. Some examples are also included to derive to the

expressions for Christoffel symbols in orthogonal coordinate systems.



4.2 Differentiation of Base Vectors

The base vectors of a curvilinear coordinates system are point

functions which changes their directions from point to point. Since we
know that any vector A can be written as
Ad=d2 =42
therefore, if we form differential of A , we get
dd=¢ dA+Ade, (4.1)
dA=2 d A+ Ad & (4.2)

In order to compute d A we must obtain formula for d é’j and dé’.

Since any vector can be expressed as a linear combination of base

—

vectors, the derivative of base vectors aﬁe l_j can be expressed as
X
ae_/_|'1_’+|'z_’ +|‘3_’ (4.3)
axi =1y €l i €2 i €3 .
52_/ P
o, —= [£ex (4.4)
The relation (4.4) gives
- oej i K gi
dej=—-dx =r,-jdx ek (4.5)
ox

The quantities |_fj are called Christoffel symbols of the second

kind. If the coordinates are Cartesian, then Zf are costant vectors, hence

(4.4) gives [ = 0 while for a curvilinear coordinate system [} 0.

Since we know that
0, =9r (4.6)

o
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de, olor| &r

therefore, A ol o | oxor

_or _afor
ox’ox’ ox’| ox'

0 ej dei

ox' ox!
= F,ﬁ er = |—fl €r (using4.4)
N (4.7)

In some books rf; is also denoted as {,’; } From (4.4) we have

N

de, _|‘1%
ox' i !
k g
- ae‘ =7 >
therefore, e L -[lgke
ox' (A
.
Sk 6
e
=>e > z |_fJ§f
X
.
Sk 6
e
= 'ax"] :|_l’j
N
ko> Oe
=200 (4.8)
X

This expresses the Christoffel symbols in terms of base vectors.

To prove:
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Proof:
We know that

- o

g
ej.e =0

- ; i
Ooe: ™
= 3 Le+e;.—=0
X

== 25 (Using 4.8)

(4.9)

0
We now represent o as
X

be ., "
% g (4.10)

Multiplying both sides of this equality scalarly by é’j we get

i
Oe ~ _Bi ->n
_axk e,=b,€ .¢€;

=-[" =B} (using 4.9)
Hence (4.10) takes the form

ai i
i%ziky (4.11)

If we know the laws of transformation of ¢*and Ej then the laws of

transformation for
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ox* 2%\ 8 (ox 2
= — € | —€p
Bx ox'| ox’

ot oxp 2" ey ot oty =272
=— —e .— — —— ¢ .ep
ox Ox’ ox' oy Ox'Ox’

_ o B depan ot o o,

ox” ol o oy oyt ox'ax’ 7

o o ox' pe a9 il
v ox. Ox) ox' - ox. Ox'ox’ (4.12)

The equation (4.12) shows that |—fj are not the components of a

tensor except when

ot 0 x

ox odex (4.13)

4.3 Christoffel symbols in terms of metric tensors

We know that

o >
85~ €ré;

Defferentiating partially with respect to &, we get

- -

ag,] oe; > e;
= —.ejte ——

Oox ox Oox

6g N S
/)

j _[m . | n
:W— ik em.ejte; j/ce"

agi' m n
5 =i &+l g (4.14)




We denote | §; g, by [ik, j] or [ik, j and define it as Christoffel
symbol of the first kind.

Thus (4.14) becomes

og;
ax’i = rik,_/+r_/k,i (4.15)

From this we get

Ogy , 98 _ 98,
i, %% %% oo
FoR A L N

kj.i

+ rji,k ki,j_rik,j_rjk,i
=2 |_l_j‘k
1(og, 0Og; Og;
o= 2= 2
ij,k 2 axj axz axk (416)

By the definition of Christoffel symbols of the first kind we know that
Gl 1=l (4.17)
Multiplying (4.17) by g"* we get
g"g, [ =gy
Sl =" Tyu

(=" [y (4.18)

(4.19)

1 og, 02, 0g,
Thus, [ =—g"| 2%+ =24 - =1 |
U 1i=58 (ax’ ox' oxt

0
To prove ﬁ(log\/g )= u

Proof: We know that
Cofactor of g,
g

g =det (g,) and & =

1.e, Cofactor ofgl_j =gg’
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Therefore,
Og _08 i
ot ot

= ggij (l_ik,_/+ |_jk,i)
= g(g[j |_ik,_/+gij |_jk,i)
~ele'Tng, +¢' [ g,)

1 0 - '
= S=5.l1+o T

g Ox
:r§k+|_§k
= §k+r§k
1 og
Pl
1 o
i 2g ox*
0
b= (l0g(2) (4.20)
To prove,
agik hk [ hi [k
W:_g |_hj_g hj

Proof: Since we know that

git= 31,
Therefore,
og* 0e T 7 o€t
—=—€ +eé€. -
ox’  ox’ ox’
og" I T ,
= o =1}, " e +e| -l e (byusing 4.11)
a ik . !
- % =—g"[ "~ 4.21)

ox’



4.4 Christoffel symbols in orthogonal coordinate systems

In an orthogonal system of coordinates g,=0 ifi#zjand g = hl2

When all the indices 7, j and & are different, the formula
[ = l(agik + agj(c gy j

oloed oo oxt (4.16)
gives
[, =0wheni,j, kare different. (4.22)
When i =k and} is different, we get
[, =L %8, %8 s
o2lox)  oxt ox
_1ow
2 ox’
. on,
L= i (4.23)

In case i =j = k, the formula (4.23) works. It also works when

Jj =k. The case when i =j we have

- |' _l(ag[k + ag/a‘ _ agiij

SRl e axt
__Lon
2 ot
( ik = 8u = O)
oh,
[oi=—h —
ii, k i 8x" (424)
k
The christoffel symbols of second kind rl,f are given by the formula
k kn
[E=g"l,, 1 (4.18)
In orthognal coordinates g" = T Hence we get
F,k, =0 wheni,j, kare all different. (4.25)

This case when i = kand is different, we have

r;] — gm|7”,n — g11|7ﬁ,i

g
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1y
h’ ~ ox’

p_Lon
i (4.26)

This formula also holds good when i =/, and j = k when i is different.

The case when i =j and k is different, we have

ri = gkn rii,n = gkk rii,k

1 oh,

A
h; ox

. |'k_ hi ahi

. ii__Eax_k (4.27)

4.5 Examples:

4.1. Determine the Christoffel symbols for the metric
ds® = (dx1 )2 + [(x2 )2 - (xl )2 ka’x2 )2
Solution:
Comparing the given metric with
ds® = gl.j.dxidxj
we get
2 2
g =1L g,= (xz) _(xl) , 8r,=82=0
Here g, =0 fori=; therefore the coordinate system (x', x*) is

orthogonal. Now for orthogonal coordinate system the non-vanishing
Christoffel symbols of the first kind are
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|_12,z:|_21,z:h o, = (x2)2 _(x1)2. 1 2 '(_ 2xl):_x1

o 2T

and the non-vanishing Christoffel symbols of the second kind are

|_122=—Z—1§.%:_[(x2)2_(x1)2F2 1 (- 2x')

[y (Y}

[ =x

|—§2 _ 1 6h§ B 1 . 1 (2x2)
oo e - 2y - ()

= Bz = X

NEEE G

= 2
F -6
4.2. Determine the Christoffel symbols in the curvilinear coordinate system
(u, v, z) where
1

xzz(uz—vz), y=uv, z=z

Solution: If7,;, k are unit vectors along x-axis, y-axis, z-axis in Carterian

coordinate system (x,y,z) and 7 is the position vector of a point of P then

r=xl+yj+zk

N 1 A A A
=>r =—( : —vz)l+uvj+zk
2
Ife” ,e”,, e, are base vectors along u axis, v axis, z axis then we
know that

- - -

- or 2 O0r 2 Or

el,=—, €e2=—", €3=—

ou ov Oz
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Therefore,

-2 3 2 -2 3 2
g,~€.e = =u? +2, g,=¢ee,=u tv
> o > o
g,=¢€.e,=1, g,=e.e,=u(-v) +v(u)=0
> o > o
8y T €65 0, g31_e3e_0

2 2

u - +v 0 0
[gl.j]z 0 u’+v: 0
0 0 1

Here we observe that g,=0 when i # j therefore the coordinate

system (u, v, z) is orthogonal and hence

hlzx/g_ll:\/u2+v2, hzz\/g_zzzx/u2+v2,
h =g, =1,

i 11

g gll hiz,
— 1 -
0 0

u’+v’

) 1

7= 0 0
N

0 0 1

Now the non-vanishing Christoffel symbols of the first kind are given by

oh, oh, 1
[ =h — h——\/u2+v2.—.2u=u
T ax o' Ou 2Vu? +v?

|_22,2 h,—= Oh, =h, %: u® +v* !

? ox on® ov .2\/u2 +v7
oh, 2 1

|_12,1=|_21,1:h18x—2= u +v W

2v=vy

2v=vy



_ _ . Oh, 5 1 3
|_21’2—|_12’2—h2§— u +v qu_u

oh 1
|_ =—h —L=—Nut+V . ———DJyv=—y
" Lox? 24u? +v?

Oh 1
[, =—h, =2 =—Ju? +V ———2u=—u
=7 ! 24u’ +v°

and the non vanishing Christoffel symbols of the second kind are given by

1 oh 1 1 u
o Lo 2u-
11 ' 2., .2

I ox! u? +1? 2\/u2+v2 u-+v

1 oh 1 1 Y
2 - Lok . 20
2 hy ox? u? 412 2\/u2+v2 u? 2
1 _[1 _i 8/’11 _ 1 1 2v— \%
v hoox® P 4y .2\/u2+v2. u? +v?
2 _[2 _i 8h2 _ 1 1 2\}- u
v hy ox' u? 407 .2\/u2+v2. u? +v?
1 :_E oh, :\/u2+v2 1 =Y
2 hy ox' ut e+ .2\/u2+v2. u’+v’
2_ M on _\/uz—i-v2 1 -V

2u=

1 2 27 2 2 : 2 2
hy Ox u +v:. o 24y 442 u +v

In cartesian coordiante system A, = i, = h, = 1 which gives that

Christoffel symbols vanish. In cylendrical polar coordiantes #, =1, 4, =,

h, = 1, hence the only non-vanishing christoffel symbols are
rr@,& = rﬁr,& =r

raa,r = rga =-r

4 4 1

o~ vor—
r

In spherical polar coordinates 4 =1, 7, =r, h, = r sinfand non-
vanishing christoffel symbols are
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|_9r,9: rrg,g: —I_gg,,: r

[ 5=l s s= s, =rsin’ 0
|_¢9,¢= |—g¢,¢= —|_¢¢,9= r* sin @ cos @
[o=-7, [},=—rsin’0

9_5’_¢_¢_1
o= 0,= = =
r r rg or 7

0 _ 6 _[¢ —
|—¢¢—sm0c050, |_9¢— so=cotd

4.6 Exercise:

4.1.

4.2.

4.3.

44.

4.5.

4.6.

4.7.

Prove that christoffel sumbols of second kind are not a tensor, but
ifthe laws of transformation of coordinates are linear they are
components of a tensor of type (1,2).

Prove that both the christoffel symbolsand Dk and Ejk are symmetric
iniand;.

Prove that rl.j,k =g, rf]

Determine the christoffel symbols of the first kind and the second
kind in (a) rectangular, (b) cylindrical, and (c) spherical polar
coordinates.

Determine the christoffel symbols of the first kind and second

kind for the coordinate system (u, v, z) where x = a coshu cos V,
y=asinhusin V,z=z.

Determine the christoffel symbols of the first kind and second kind

for the coordinate system (u, v, §) where x = uv cosd, y = uv sing,
z= 1 (u2 —? ) .

Calcualte the six christoffel symbols of the two dimensional uv -
system defined by

x= 2 eu—v, y — _63u+2v'

4.7 Let Us Sum Up

In this block you have learnt how to compute Christiffel symbols of

the first kind and the second kind in orthogonal coordinate systems. You

have also learnt that Christoffel symbols, in general, are not tensor quantities.
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COVARIANT DIFFERENTIATION

List of Contents :
5.0
5.1
5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.3
5.4

5.5
5.6
5.7
5.8
5.9

Objectives

Introduction

The Covariant Derivative of Tensors
Covariant Derivative of Scalar Function
Covariant Derivative of Relative Scalar
Covariant Derivative of Relative Vector

Covariant Derivative of Second Order
Tensors

Rules of Covariant Derivatives

Gradient, Divergence, Curl and Laplacian in
Tensor Notation.

The Riemann-Christoffel Tensor
Covariant Curvature Tensor
Examples

Exercise

Let Us Sum Up

5.0 Objective

After working with this block you will be able to

> find covariant derivative of various types of tensor

> write the expressions of gradient, divergence, curl and

Laplacian in any coordinate system.

> define the Riemann-Christoffel tensor

5.1 Introduction

In our discussion here we have included : the covariant derivative

of tensors, rules of derivatives, gradient, divergence, curl and Laplacian
in tensor notation. Certain examples related to them a will also be

discussed.
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The covariant derivative of tensors

Covariant derivative of a vector : Let (x’) denote a system of
curvilinear coordinates in the Euclidean 3-D space, and let €, be the natural

basis for the system. Consider a vector field defined byZ .Atapoint P, we
have

Ad=4¢ (5.1)

1

The differential dA is given by

dﬁ:d(/ﬂ Z[)

= Z;‘ dAl +Aid Zi
=e;dA' +A'd e,

= ei%dxk +Aja—elfdxk
X

N i

k i k
=ei—dx +A’|_’jk e; dx

> Mo n Voul?
dA= |:[a—k+ A’ rffkjdxk} e (52)

X

Let dA=6A e, (5.3)
then

(o4 in
54 :(—k+AJ ijjdx’f

ox
or, SA =4, dx" (5.4)
‘ o4’ .
where, 4',, = P + A’ |_’/k (5.5)

Since dA' are contravariant components of a vector, and dx* are the
contravariant components of any arbitrary vector hence we conclude from
(5.4), by quotient rule, that A',, are the components of a second order mixed

tensor. We define 4', as the covariant derivative of 4'.



Let A=4%¢ (5.6)
The differential d 4 is given by

- -

dAd=¢ dA+A de

- -

=e' dA,+ A,d e’

k de’ k
p dx +Aj P dx

oA,

i
=e

=¢ %dxk + Aj(— el ]dxk

X
dZ:K%—AjF;;jdxkF (5.7)
Let dA=54¢ (5.8)
54 = (% —A4,17 )dxk
or, SA, =4, dx* (5.9)
where 4, = % -4, [ (5.10)

Since 84, are covariant components of a vector, and dx* are
contravariant components of any arbitrary vector hence we conclude from
(5.9), by quotient rule, that 4, are the covariant components of a second

order tensor. We define A, as the covariant derivative of A.

Note : It should be noted that the covariant derivatives 4', and 4, , are

oA' o4,
different from the partial derivatives ey and a—,ﬁ respectively. In fact, the
X X

i derivatives g O
partial derivatives axk an axk

general. This may be shown by writing the law of their transformation to

are not the components of a tensor, in

another system.
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If the vector field under consideration is the cartesian coordinates,
k
then the basis is constant and all Christoffel symbols ry, ,and rl.fvanish. In this
case, the covariant derivatives of a function is identical to the partial derivatives
of'the function, i.e., when (x') is a cartesian system of coordinates then
oA’ _ 04,

y Cll’ld A7 i

A, = =—L
k s k
Oox

(5.11)

5.2.1 Covariant derivative of a scalar function :

Let ¢ define a scalar field of the coordinates x* in the space; then

0 .
—¢j€ are the covariant components of a vector.

ox
Since d¢ = aa—qzdxk , we see that the covariant derivative of ¢ is
X
identical to the partial derivative of ¢; that is
0
P = ii (5.12)
ox

5.2.2 Covariant derivative of relative scalar of weight :

Let ¢ be a relative scalar of weight o, then (\/E )7'” ;ﬁ =¢ 1s an

absolute scalar. If ¢ is a point function then

o o -2-
a_a_{g 2"’}

204 -~ -°1 0g
299 _ 0 27 Y8
& o ¢2g o
(a4 -~ 1 og
i 90—
ox 2g Ox

:gfz % ¢w%(log\/§)

ox* N
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where (2,,{:6—{—(;@“{, (5.13)
ox
is called the covariant derivative of dwith respect to x*. The ¢, , given by

above equation is the covariant derivative of a relative scalar pof weight .

5.2.3 Covariant derivative of a relative vector:

Let F'be arelative vector of weight o, then the vector /7 defined by

fi= (@ ) F (5.14)

is an absolute vector. Now

o o 4.
a_a_(gFj

o' _ SOF o 5108

ot o 2%
=g_% 8Fi_a) 610g\/§ o
ox" o
o (oF ,.
—i=g’ ﬁ—w%Fj (5.15)

Multiplying (5.14) by| ,; and adding to (5.15) we get

ort - el aFt )
éﬂ_’@f":g 2|:ax—k+|_;g~Fj—CO|_§dFlj|

. 2l pF" .
=>fh=g {ﬁ#lkj}”—w“ﬂp}

. OF' . .
:ijzﬁmgw—wﬁf’ (5.16)
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which is a relative second-order mixed tensor of weight m. Above formula

defines the covariant derivative of a relative vector F’ of weight o.

5.2.4 Covariant derivative of a second order tensors

) Let 7 be a second-order tensor which can be expressed as

-

P > i
T'=eeT

J

The dTdifferential of 7' is given by

(5.17)

dT:[deijejT"j+ei[dejjTy+eie;dT’j

—> —> .

oe;” ., ~>0e;. .. > oI

_a—klejTU‘f‘ j—]:TU-‘r‘ i€ k
X X

N

- >

:: aT!'/ pjri il P
dT = G + TP AT, |dx” |eie;

—

Let dT=5Tijeiej

then it follows that
=T 7

o orY o o
where T = P +T”’|_’pk+T"’ L
x

- - . - > . - aTU i
) )
= rﬁepe_/T’+rjkeqe,'T’+e,'e_,~—ak dx
X

; - - . o > ; 6]’!/ A
= pke,-ejT”’+|_jlkeje,-Tq+ei-efW dx
X

(5.18)

(5.19)

(5.20)

which is called the covariant derivative of 77. T i are components of a tensor

of order (2+1).



(1) Let 7 be a second order tensor which can be expressed as

T =8, T (5.21)

ij

The differential d7*of 7 is given by

dT:(dei]ej T, +ei(dejj]:j +e' e’ dT,

5
az—) - ej —>.—>'a
:a—e’T+ea T,+e' e — |dx*

i e

. - . - = 0T,
== e’e' T +e|-[7.e" [T, +e' e’ —L |dx*
p g q y axk

- ee’T rqee’T +Z;6Tjdxk
* ox*

anf p q k| _>/
Tl gk el dx" |e'e

(o, 1--
= (gi—Tperc—Tq,- %jdxk e'e’ (5.22)
Let dT =8T,8% (5.23)
then it follows that
or,
57;/’ :(gli_ij Jk_T r j
= Tz"j,k dx*
6T
where T, =— —L_r[r-1,[" (5.24)

which is called the covariant derivative of 7 ;T are components ofa

covariant tensor of order three.
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(ii1) Let 7 be a tensor of second order. We express T as
T =¢'¢r (5.25)

l

The differential d f’ of f’ is given by

dT:(de’]ejI;j +ei(dejj7;j +é'e dT/

- - )
o' > . e, . 2oor |,
= 3F kejﬂ’+e’—a ;7}’+e’ej—a — |dx
X X X

ak

- > Tj
= —er eTJ+er3ke Tj+eea—de
2

=| - j’ke’e T’+e|_’ eTp+ee aT'jabc
7 ox"

: i T‘
dT = — +T”r’ —T’q dx* ee.
Let dT=8T/8'¢, (5.27)
then if follows that

1

ST/ = (‘ZT + 171, -1/ "jdx
X

Y . ‘
where T = g’k + Z;prf,k—ﬂ,'/ i (5.28)

l’

which is called covariant derivative of Tl/ Tl’ , are components of a mixed
tensor of order (1+2)..

Theorem : The covariant derivatives of the base vectors €, the reciprocal
base vectors &, the metric tensor g the inverse metric tensor g; and the

= |gl_j| are all zero.

Proof : Since é , ¢/, g; and g” are absolute tensors, therefore



- a ei -
eij = ax/ - ekrfj
= ekf —ekrk
e, =0 (5.292)
- 86 M
e, =—-+ e
ox’
= —ekr;kJr er;k
ei,j -0 (5.29b)
agy
gj/,k a k _gpj lk_gql jk
0g;
= ax/i _l_ik,j_rjk,i
= |_ik,j +|—jk,i_|_ik,j _I_jk,i
Sk = 0 (5.30a)
ij a v i
g = agk +g"l +gT,
:_gpjl_ipk_gqi ;k+gp/|_ipk+gqi ;k (by4.21)
g”k =0 (5.30b)

Since g= |gl.j| is arelative scalar of weight two, therefore

g
ok ~2el.

1 0g i
) —[1
g 2g ax zk:|

=2g (10gf ) (logf )}

g, =0 (5.31)

8r =
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As a consequence of constancy of g, and g’ with respect to

covariant differentiation, we have
Ay = (g”’Aj),k =g"4;, (5.32a)
4, =(g,4"), =g, 4, (5.23b)
But this is precisely what one expects if the metric tensors are to

be used for raising and lowering indices of all tensors, including those

arise from covariant differentiation.

5.3 Rules of Covariant Derivatives:

Since covariant differentiation is directly related to the partial
differentiation, the rules of partial differentiation are applicable to the

covariant differentiation as well.

Theorem: If A’ and B’ are two vectors then
(A" +B ) =4, + B,
Proof: Since 4’ and B’ are two vectors therefore 4’ + B'is also a vector.

Now

(A" + B"),k = i(A" + B")+ (Aj + Bj)r’,'q

ox*

oA OB o
:yﬁ'ﬁﬁ'Aj kj+Bj|_kj

oA’ T OB’ T
= (ﬁ-i_ Ajrk/j + (ax—k-i' B/l_kjj
(4B, =4, +B, (5.33)
This shows that covariant derivative of the sum of two vectors 4’

and B'is equal to the sum of the covariant derivatives of 4’ and B'.

Theorem: If4’and Bf are two vectors then

(4'+B, ),k — A+ A4'B,,



Proof : If A’ is a contravariant vector and B is a covariant vector then we
J

know tht their outer product A’Bj is amixed thensor of order two.

(A[Bj ),k = axik(AiBj )+ Aijr;k_Aqu i

aAl i aB i i
=B A +A4’B I -4'B["
/ 0B,
o4 +A°1 B, + 4| —L-B,["
ot ot
(4B) =4,B,+4B, (5.34)

Theorem: The order of operation of contraction and covariant differentiation

is interchangeable.
Proof: For a tensor A; we have

A 4, AT Al
ik W-’_ q' Jjk

Equating i =/, we get

4, = 84 +APF A{jf;fk

P .
8147 +Ar ;rf@

ot
ox*

= (47), (5.35)

5.4 Gradient, Divergence, Curl and Laplaciam in tensor notation.

Gradient :Let ¢ be an absolute scalar function, then

dg = (dxf Zijw
we also have

d¢ = ¢,idxi
LeNp=9,

3v¢22i b (5.36)
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Above expression defines the gradient of a scalar ¢ where ¢ , is

o¢

covariant derivative of ¢ and reduces to the partial derivative FVR
X

Divergence : If A=A é then divergence of A is defined as the contraction

of covariant derivative of A’ with respect to x’. Thus

V. A=A (5.37)
Theorem : VA_——( A’)
\/_ax
Proof:
o4
VA=A ==+ 4"
5L axl pt
oA’
=——+4° lo
o 3 log )
=8A g 1 O4g
ox' g oxf
=8A g 1 0yg
ox' g Ox'

A=——( gA') (5.38)
Curl of a vector. The curl of a vector 4 is defined defined by
curl 4= (g”kAk’j ) e (5.39)

Laplacian: The Laplacian of a scalar function ¢ is defined as the divergence

ofgrad ¢i.e.

Vig= div(? ¢,,.j (5.40)
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= div(gjkﬁk e;j
1 0 i
:Eﬁ(\@gj ¢,k) (using 5.38)
R 9P
Y ¢_\/§axj [\/gg aka (5.41)

5.5 The Riemann - Christoffel tensor

In case of tensor the order of covariant differentiation is not, in

general, commutative. Let us discuss under what conditions can we write

Ai,/’k = Ai’kj (5.42)
Ai,jk = (Ai,j ),k
6A
= ax Am jl— Ai,ml_jk
04, 04,, 04
_ i( Amr;zj ( jrm [__Anr,m jr
oxk \ ex’ ox’ ox"

04 y 0 o wOA .04,
i,jk_axkaxj_ max ij i a k zka j

+ln 4, - —+ [1Ima4,  (5.43)

Interchaningj and £ in (5.43), we get
0’4, 0 [n_ w04, rn 04, 0A,

ik ; ik k_
" oxdoxt "ox! " " ox! ”8"

+[r 4, F,k—+F,m nA,(5.44)
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Hence,
0 m
Ai,jk _Ai,kj =4, — P, A4, ot rl]
+[nln 4, -l 4,
a m m
- ) S Ta- eyl
Thus we write
A=A R (5.45)
where
R N N O
ik~ 8)(:] lk ox k' nk (546)

is the Riemann Christoffel thensor and the symbols R:;k are called Riemann’s
symbols of the second kind. From (5.46) it follows that

Rm __Rm

ijk ikj

(5.47)

we see from (5.45) that the vanishing of the Riemann Christoffel tensor is a
necessary and sufficient condition for mixed covariant derivatives (5.42).
We do make a final note here that the R-C tensor is a measure of the ‘curvature’

of a particular space and its vanishing is a condition for the space to be

Euclidean i.e., the space to be “flat”.

5.6 Covariant curvature tensor

The tensor R, =8, R (5.48)

ijk
. . m . .

1s an associate tensor of the tensor Rl,jk and is a covariant tensor of rank four.
This tensor is called the covariant curvature tensor and the symbols R are

called Riemann’s symbols of the first kind. Substituting the value of R:k from
(5.46) in (5.48) and simplifying, we get the following expression for the tensor

nijk *

a m
R, =@ﬂkﬂ = F,j Al aalr=l I (5.49)



On putting the values of the Christoffel symbols of the first kind, we have the

following alternative expression for the covariant curvature tensor

1| g, n 82gij 82gnj _ 0’8y

o oo’ | ox'oxt  ox'oxt  ox"ox’

From this expression, it follows that

R, =-R,, (5.51)
=R (5.52)
nijk = Rfkni (553)
and
R, =R =0 (5.54)

The first two equations (5.51) and (5.52) show that the covariant

curvature tensor is skew-symmetric in the first two indices z and i as well as

in the last two indices j and .

5.7 Examples:

5.1.  Provethat 5;’/{:0
. 05", o
Soluio: 5=t 4o

=O+rj.k—|_f/k
=0

5.2.  Provethat
(e,47), = g4,
Solution: By the product rule
(gy,A(;P ),k =gy A + &AL
-0+, 4l

_ Jp
=845
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5.3.  Provethat curl 4, = 04, —%
ox"  ox"
Solution: curl4,=4,,-A4,,
= aA’" o Av rjnzz_ aA”’ + Ag‘ r;m
ox" ‘ ox"
_ 04, B %
ox"  ox"’

5.4. Express the divergence of a vector 4 in terms of its physical components
for cylindrical coordinates.

Solution : For cylindrical coordinates

1 0 O
g=0 »* 0=/ and \/gzr
0 0 1
The physical components denoted by A(r), 4(0), A(z) are given by
A(r): Jg A =4, A(H): g, A* =rd’
Alz)=1lg, =4 = 4.

Therefore,
div A=At = O ([ga")
’ \/E ox
-1 2 (a0 2 (o) £ (o)),
5.5. Prove that
Ry +Ry +R; =0
Solution : Since

m a m a m m n n n
WA k rz‘j +rnjrik _rnk rg

ot ox



and

Cyclic permutation of indices i, /, k gives two more equations:

Rii —FFT,—; AR

m a m m| m
Rklj a i +|7m|rk]_|7nj|rk[

Since the Christoffel symbols r:’ are symmetric in i and j, therefore

adding above three expressions, we get

m m m
Ry + Ry, +R;; =0

5.8 Exercise:

5.1.

5.2.

5.3.

5.4.

5.5.

Show that the covariant derivatives of &%, ¢ and ¢’ ¢ vanish.
> Zijk Imn

In orthogonal coordinate system, prove that

vigo_ L |0 (mhop) o (hhop) o (hh op
" hhh | ox ko' s h, o)\ hy ox

In orthogonal coordinate system, prove that

div A = e+ D a2
+ L O
Prove that

(4B, )’p — A B, +AB,,

Show that
R, +R

piki
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5.9 Let Us Sum Up

In this block, you learnt about covariant differentiation of various
order of tensors. You have also learnt how to find the expressions of
gradient, divergence, curl and Laplacian in various coordinate systems.

You have also defined the Riemann-Christoffel symbol.

kokosk
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