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1.0 Introduction

Many problems in science, engineering and technology
reduce to mathematical problems consisting of differential
equations fall basically into two classes, ordinary and partial,
depending upon the number of independent variables presents,
Solutions of many differential equations arising out of physical
problems are subject o some conditions.

In this unit we will introduce the concept of initial and
boundary value problems. Questions may arise: Whether solution
exists for all problems? Under what conditions does the problem
has &t least bne solution? Under what conditions does the problem
has a unique solution? These questions will also be answered in
this umit.

Finally, dependence of solutions and the concept of
Wronskian will also be introduced.

1.1 Objectives

After studying this block you should be able to:

+ Know occurrence and origin of differential equations in
various helds.

o Explain, what an initial value problem (IVF) and a
boundary value problem (BVP) is

s Know the Sturm-Liouvielle problem




» Know the conditions for existence and uniqueness of
solutions of an ordinary differential equations

&  Understand the concept of dependence of solutions,
Wronskin and its use in Linear independence of
solutions.

1.2 Imitial Value Problem

An equation of the form

e
i = fx. ) ¥(x) = ¥,

where yv(xg) denotes the value of ¥ at x=%, 15 called mitial value
problem.

Inital value problem can be solved by two methods

(i} The Euler method

Let y denote the exact solution of the initial value problem
which consists of differential equation

dy

ﬁh—f{%.ﬂ' (1.2.1}
and the initial condition y{x,) =y, (1.2.2)
Let h denote the positive increment in x and let

x =x,+h 50 that x,-xs=h (1.2.3)

MNow If{x.y}dx='i%ﬂ'-'ﬂ=l‘[-¥.]'—}'[m =¥x5) =¥
b Ea

SoE )= L"{L ¥dx (1.2.4)
=

If we assume that f{xy) wvarnes slowly on the interval
X, Sx5x ,then we can approximate fix.v) in (1.2.4) by 15
value fxs,vo) at the left hand point xa. Thus we have

&l
Hrl) = y0+ [ fxg, ) (1.2.5)
where = stands for approximation.
But [ (kg ¥t = £ {3y ) [ = F (5, 305, —55)
B Ty

|;!lllq'[-‘--[u -.}'l}
5 (1.2.5) becomes y(x,) = y, + A {5, 3,)

It follows that the approximate value y{x;) i.e., y) of y at x, is
given by the formula

Yi =¥y + A (x5, ¥) (1.2.6)
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with the value of y; given by (1.2.6) we now proved in like
manner (o get ¥y by the formula

¥ =¥ +"|’J'r|:-t1'-.'|"'1:| (1.2.7)
In general by the repeated application of the above method, we
determing ¥p.; in terms of v, by the formula
¥y =¥ +hf(x.0) (1.2.7)
In general by the repeated application of the above method, we
determing Yy+; in terms of v, by the formula

Fous =¥, tH(x,.7,) {1.2.8)
{ii) Picard's method
Consider an initial value probiem of the form

L e FxDH0) = 54 (12.9)

By integrating over the interval (xg,x), {1.2.9) gives
| L
fev = [fix, 0
e by

or Wx) =y = £,
or Hx) = yy + [flx, phd (1.2.10)

Thus, the solving of initial value problem (1.2.9) is equivalent
1o inding a function v(x) which satisfies the equation (1.2.10),
since by differentinting (1.2.10) we get i = fix,¥) and
putting x=xg in (1.2.10) yiclds w{xg)=y+0 i€, ¥(xo)=vo.
Conversly (1.2.10) has been obtained from (1.2.9) by
inteprating over the interval (xp,x) and employing the initial
condition ¥{xa)=ys.

Since the information conceming the expression of ¥ in
term of x is absent, the integral on the RHS of (1.2.10) cannot
be evaluated. Hence the exact value of v cannot be obtained.
Therefore we determine a sequence of approximation, we put
y=vp in the integral on the right of (1.2.10) and obtain.

5
i) = vy + [£(x,3,)ds (1.2.11)

where v,(x) is the corresponding value of v{x) and is called first
approximation and is betier approximation of ¥(x) at any x. To
determine still better approximation we replace v by v, in the
integral on RHS in (1.2.10) and obtain the second
approximation y: as



yalx) =y + [fr, 3 e (1.212)
l'
Proceeding in this way, the nth approximation ¥, is given
by
Fol®y=yo + [fixy,,)ds (1.2.13)

Thus, we arrive at a sequence of approximate solution
yi(x), ¥a(x), ..., ¥ulX)

1.3 Sturm - Liouvielle Problem

A special kind of boundary value problems are known as
Sirum=Lioville problems. Such problems anise in physics and
engineering and help solving boundary value problems of partial
differential eguations.

Definition. A second arder differential of the form

i—[ﬂ-ﬂ%}ﬁq{ﬂdﬂ:}h -0

where pm q and r are real functions, p has a continuous derivative,
g and r are continuous; p(x)=0, r{x)=0 for all xe[a,b]iis a
parameter independent of x and y satisfies the boundary conditions

Aral+ 4,y (a) =08, a)+ B, (b)=0
Al, A2, Bl, B2 being real constants such that Al and A2 are not
both zero, Bl and B2 are not bath zero, is called a Strum-
Liouwville problem.

Example : The boundary value problem
1
%+ Ay =0, 10) = 0, y{x) = 0

15 8 Sturm-Liouville problem, as the equation ¢an be written

%[1 .%]+[ﬂ+i.1}}‘={l‘

with the boundary conditions
1p(0)+0p' (D) =0
Iyx)+ 0 (m) =0



Definition: The values of the parameter 4 of a Sturm-Liowville
problem for which there exist non-trivial solutions of the problem
are called eigen values or characteristic roots of the problem. The
comesponding non-trivial solutions themselves are called eigen
functions or characteristic functions of the problem.

1.4 Existence and Uniqueness of Solution

Just as a differential equation of the first order need not have a
solution always, an equation of the second or higher order may not
have a solution. However, a set of sufficient conditions has been
devised a guarantee the existence and uniqueness of a solution of
such an equation. Since the theorem of existence and uniquencss
for an nth order equation may readily be derived by reducing 1 1o a
system of equations for which the existence and uniqueness has
already been proved, we state here the related conditions and don™t
give the proof of the theorem.

1.3.1 Existence and Uniqueness theorems

There exists aunique solution of an nth order differential
equation p*™ = f{x, ... """} that satisfies the conditions

xS = Yo b (%) = ¥oa V(%) = ¥t () = g™

is the neighbourhood of the initial values (g, g, ¥4 o), the
function [ is a continwous function of all of the imitial arguments
and satisfies the Lipschitz condition with respect to all arguments
from the second onwards.

Statement, Let f{x, y)be continuwous in a domain D of the

(x, ¥)plane and let M be a constant such that (14.1.1)
FIENY L - inD. Let f(x,y)satisfy in D the Lipschitz

condition in » namely

FEZDET(ER™S B 4™ o (1.4.1.2)
where constant K is independent of =, 3,,);.
Let the rectangle R, defined by

v —xe| < Ay =y o (14.1.3)

lie in D, where Mh<k Then for |x—x,)<h the differential
equation dy/de = f{x, y)has a unique solution y = p(x) for which
¥(Xal=¥o



Proof:
We shall prove this theorem by the method of successive

approximations. Let x be such that |[x—x,|< k. We now define a

sequence of functions y,(x), »,(x),... ¥, (x)..., called the successive
approximations{or Picard Iterants) as follows:

»ix)=y,+ ‘j..ﬁ-:'-. J"n:m-r'-'
i

Yol x) = 3+ [ iz, 3,)de
iy

>— .. (14.1.4)

Yot (%)= vy + [fx, 3, ;)ee
*

Vol X) =y + : Sxy, e
] J

We shall divide the proof into five main steps.

First Step:
We prove that, for x-h<xsx +hthe curve

¥ =¥, (x)lies in the rectangle B, that istosay y, -k<p<y, +k.

'j;'{xpyum{

< [|foan)ldd by .. (1.404)
*

of |}'1—}r.|EM|I-:,|£ﬁﬂi-ﬂr,
By (1.4.1.1),(1.4.1.3) and the given resukt viz. Mk < k.
This proves the desired result for n=1.Assume that
¥ = Fpa(x)
lies in K and so f[x.y,,] is defined and continuous and
satisfies

Mo |J"| - ."'nF .

|l f(x. ¥l = M on [x,—h,z, +h].

}f{:.yn-.}%
a

g ]]I{Lr.-ﬂ'lliﬂ

From (4),we have [y, -3, =




S M|x-x,|<Mh<k,
as before which shows that y (x)lies in R and hence
fix,y,) is defined and continwous on [x, ~h,x, + k].The above
arguments show that the desired result holds for all n by induction.

Second Step.

We prove again by induction, that
MK™
Yo~ You| S——lx-xf oo (L4.1.5)

We have already verified (1.4.1.5) for n=1 in first step
where we have shown that [y, ~ y,| < M|x—x,| .Assume that this
inequality (1.4.1.5) holds for n-1 in place of n, that is let

m=f

. (14.1.6)

ME™
{n—m'x'x"

f-!'rn'\-l .--vm-h!g
Then , we have

= Foal =| JUFO6 3 )= Flx e by (1.4.0.4)
g

0or

Vo= Yeul € 30 flmpaa)de (14.07)

Lipschitz condition {1.4.1.2) gives

My )=y | s Ky — Yo o (14.1.8)

Form (7) and (B) ,we get
¥ = Y| 5 [K|vus =y} ]
“
g MK Jeonl by (1.4.1.6)

(=1 m
Hence by mathematical induction, we conclude that
(1.4.1.5) is true for each natural number n.

Third Step.

We shall now prove that the sequence y, converges
uniformly to a limit forx, ~h<x=x, + 5.



For the interval under consideration, |.1: —.r,,l =h.
Hence from second step, we have

< 1% triee for all f.

Hxﬂ—'lh.!-
I

¥, =¥

Uising this ,the infinite series

Vot W =¥+ (0 =3+t = W0+ (14T
< ¥y + MR+ %Hﬁhi ot MK 4

n!

S_].J,+E“Hr[eJEJI —1]

which is known to be convergent for all values of K.h and
M. Conscquently, the series {1.4.1.9) is surely convergent. Thus, by
the Weirstrass M-test, the series (1.4.1.9) converges uniformly on
[z, =2, +h] Now since the terms of (1.4.1.9) are continuous

function of x, its sum
Iim v, {x) = Wx), say, e (141,100

[‘-'J',. =¥ +i{}', —J',.-.Il]

must be continuous.
Fourth Step.

We now show that = y(x)satisfies the differential
equation dy /dx = f(x, ¥).
Since y, (x)tends uniformly to p(x) in [:,] - h, X, +h] amd
by Lipschitz condition,
|y = fix s Kly-y,
it follows that f[x, y (x)]|tends uniformly to f[x, Wx)].
Apgain from (1.4.1.4) we have

polxvm g+ [z, (2
L]

or 1.1_2: Y. (x)= +!E ]fIx,_}rﬂ__l{:}}ﬁ,,hﬁiﬂg n—4om,



Since the sequence f[x, v (x)]. consisting of continuous
functions on the given interval, converge uniformly to f[x, Wx)]

on the same interval, the interchanges of limiting operations given
bellow are valid . Thus using (1.4.1.10), we have

Ha) =y + [limf x5, (0)]dx
L]

or  yx)y=y+ [Fxon) .. {14.1.11)
q_

the mnteprand on the nghi-hand side of {1.4.1.11) being a
continuous function of x, we conclude that the integral has the
derivative thus, the limit function {r)satisfies the differential
equation dy/dx = f(x.¥} on {J.',,—Fn:,,+-ﬁ] anvd i3 such that
M=y,

[In the above four steps we have thus proved the existence

of a solution of the given initial value problem. The next step will
show that the solution v{x) i= unique.

Fifth Step.

Unigueness of the solation:
We now prove that the solution y= y(x)just found is the

only solution for which Wz, )= ¥,.

Assume if possible y = ¥{x}, say, is another solution of the
given initial value problem.

Let [F{x)—wx)| s Bwhenx,—hsxsx, +h .. (14.1.12)

It may be noted here that we can surely take B=2K.
From (1.4.1.11), we et

F{x)- wix) = ]‘[ﬂx. Fix)}— fix, vix)}
or  [rex)-y(o) = f|f e ¥ - ey e
L
of  |F{z)-pix)|sK :FI]"'{I:I—J’{I]-'.'E'II .- (1.4.1.13)
L]

[ Lft=, F(=)} - fix 002} < K[¥(x) - »(x)| by Lipschitzcondition |

or  |Fix)-p(x)| 5 KBJx - x| using (12) L (1.4.1.14)
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MNow substituting (14) for integrand in (13) ,we get
x i — 1
[Fix) - pix)| < K°B [ --:nl.ingﬂﬁl- o (L4115
I*

2!
again substituting {1.4.1.15) for integrand in (1.4.1.13) ,we get

& r
|¥ix)—yix)| = K f

2
e
Continuing in this way , we shall surely get

n - B A
|Jr'{'.:]|—,1-|{.:]|5|£ E;r al 55{“:} e (14.1.16)

( Kk)"
n!

Now the series 3 B0) converges, and so lim 857 _g.
= n! e
Thus |}"{J.'}—_r[.1.']|| can be made less than any number however

small and consequently we conclude that
¥ix)-wx)=0ie. Flx)=wx).
This shows that the solution y= w(x) 15 always umque, and the

proof of the theorem is complete,

1.4 Linear dependence and independence of
solutions of an equation

Let ¥3, ¥2,...,%: be n solutions of the linear differential equation
if + P i::JI'?+.-..+ Pym(

where Py, Py, ...P, are functions of x or constant.
There n selutions vy, ¥3.....¥s 8re said to be lincarly dependent, if
there exists a set of n constants ), 83,., .8, at least one of which is
different from zero, such that

If no such set of n constants a,, &,...,&, exists then the solutions v,
Y-+ -a¥n 80¢ 5aid to be linearly independent.

1.5 Wronskian

The determinamt



B ¥ o K|

¥ ¥ - ¥y
i'F'l:I::I = | Fi i
J-',hl I].-';_I N .:"'.-r‘-l!

11

is called the Wronskian of the set of functions vi, 2. ¥1.... Yo

Example, Show that the Wronskian of ¢ coshx and
& sin b (b = 0} is be™

Sol. Let y, we™ coshx and y, = ¢ sinbx

Then, Wronskian of v, ¥ is

W=t 73
n oM
i e coshx €< s by J
“(acoshx —bsinbx) e (asinbx+ bcoshx
= EEI!.I:

1.7 Self assessment question.

1. Show that f{x, ¥)=x" satisfies the Lipschitz condition on
rectangle |x| < L]y <1 but does not satisfy a Lipschitz condition on

the stripx| < L] <.

2. Show that the conditions for the existence and uniqueness of
a solution of the following initial value problem are not satisfied by

the function f(x,¥)=(y=1)/x in any rectangle R of xy-plane
with {0,1) as its centre : v =({¥-1)/x, {01 =1 but a soluticn docs
exist of above. Give reason for your answer. Draw some possible

solution curves,

3. Show that the solutions ¢',¢™ and &™ of y, ~2p, -y, +2y=0
are linearly independent and hence or otherwise solve the given

equation.
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1.8 Let us sum up:

In this block we have covered the following points:

2.

3.

We give the concept, how does a differential equation
originates,

We introduced the concept of initial and boundary value
problem and defined the Sturm-Liouvielle problem

We discussed the existence and uniqueness of solutions
We gave some theorem with proof on dependence of
solutions

We introduced the Wronskian and its use in linear
independence of solutions,
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BLOCK 2
PARTIAL DIFFERENTIAL EQUATIONS OF THE FIRST
AND SECOND ORDER

Structure

2.0 Introduction
2.1.0bjectives
2.2 Linear First order Partial Differential Equations
2.2.1. Origins of first order PDE
2.2.2. Caichy's Problem of first order
2.2.3. Linear equations of first order
224, Integral surface
2.2.5. Surface orthogonal to a given system of surfaces
2.3 Non-linear first order PDE
2.3.1. Equsations of first order
2.3.2. Compatible system of first order equations
2.3.2.1. Self Assessment questions
2.3.3. Charpit's Method
2.3.3.1. Self Assessment Questions
2.3.4. Special types first order equations
2.3.4.1. Self Assessment Questions
2.1.5. Jacobi's Method
2.3.5.1. Self Assessment Questions
2.4.Second order FDE
24.1. Linear equations with constant co-efficient
2.4.1.1. Self Assessment Questions
2.4.2, Characteristic curves
2.4.2.1. Self Assessment Questions
2.4.3, Reduction to canonical forms
2.4.3.1. Self Assessment Questions
2.4.4. Separation of Variables
2.4.4.1. Self Assessment Questions
2.4.5. Monge's method
2.4.5.1. Self Assessment Questions
2.5,  Letus sum up

2.0 Introduction

An equation involving partial differential co-efficient of a
function of two or more independent vanables s known as a partial
differential equation. If a partial differential equation contains nth
and lower order denvatives, it i said to be an nth ‘order’ equation.
The ‘degree’ of such equation is the greatest exponent of the
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highest order. The equation will be called ‘linear® 1f, it is of first
degree in the dependent variable and its partial derivatives (i.c. the
products or powers of the dependent variable and its partial
derivalive must be absent). An equation containing power or
products of the dependent variable and its derivatives is called a
*non-lmear” partial differential equation.
If x, v are the independent vanables and = is the dependent

variable, the following notations are used

EE_ :E r:a—rf 3:313 r=a:E
= .Br' ) E.b.lr .a]_':ll &‘Q}Ir

if %1, X2, ..., X are the independent variables then

(5 oz oz

"E;I v = 'a}:_!r"'l F"-LT'HT

are also used,
Sometimes, partial derivatives are denoted by making use of
suffices, Thus

o=

“;Eﬂ “:@ _|,|!=E B =& d =ﬁtln
Tt T &y T & " & &k
2.1 Objectives

After studying this unit, you will be able to:

» Know what & partial differential equation is, how does it
occur and how does a PDE be obtained.

+ Know what an integral surfasce and what an orthogonal

surface is

Solve equations using Charpit’s and Jacobi’s method

Solve linear second order equations

Reduce to canonical forms

Solve nop-linear equations using Monge's method.

- % & @&

2.2. Linear First order Partial Differential Equations

We now proceed to the study of partial differential
egquations proper. Such eguations arise in geometry and physics
when the number of independent variables in the problem under
discussion is two or more. When such is the case, any dependent
variable is likelv to be a function of more than one variable, so that
it possesses not ordimary denvatives with respect to a single
variable but partial derivatives with respect to several vanables.
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For instance, in the study of thermal effects in a solid body the
temperature 8 many vary from point o point in the solid as well as
from time to time, and, as consequence, the derivatives

20 00 26 26

& & & &
will, in genera, be nonzero. Furthermore in any particular problem
it may happen that higher derivatives of the type

a'e #'e o'

[
& ot aiee

may be of physical significance.

When the laws of physzics are applied to a problem of this
kind, we sometimes obtains a relation between the derivatives of
the kind

= )=0 (2.2.1)

Such an equation relating partial derivatives is called a partial
differcntial equation.

Just as in the case of ordinary differential equations, we
define the order of a partial differential equation to be the order or
the derivative of highest order occurring in the equation. If, for
example, we take 8 variables to be dependent variable and x, v and
t to be independent vartables, then the equation

g = % (2.2.2)

is a second-order equation is two variables, the equation

L]
[E] + % =0 (2.2.3)

is a first-order equation in two variables, while

2e a8 ad
B Y g mme i 224
Iﬂ:.' +P-ﬂy + E!i' 0 ( )
is a first-order equation in three variables.
In this chapter we shall consider partial differential
equations of the first order, i.e., equations of the type
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o
F(E',E,.-.-] -0 (2.2.5)

In the main we shall suppose that there are two independent
variables x and v and that the dependent variable is denoted by 2. If
Wi Wit

Gz e
=7 =-— 26
P e q o (2.2.6)
we se¢ that such an equation can be written in the symbolic form
feyzpg)=0 (2.2.T)

2.2.1. Origins of First-order Partial Equations

Before discussing the solutions of the type (2.2.7) of the last
section, we shall examine the interesting question of how they
arise. Suppose that we consider the equation

(2.2.1.1)
x4y ${z=c) =a®
in which the constants a and ¢ are arbitrary. Then equation (2.2.1.1)
represents the set of all spheres whose centers lie along the z axis.
If we differentiate this egquation with respect to X, we obtmn the
relation

X+ pz=-c)=0

while if we differentiate it with respect to v, we find that

yrag(z—ch=0
Elimination the arbitrary constant ¢ from these two equations, we
obtain the partial differential equation
(2.2.1.2)
yp=xqg=0
which 15 of the first order. In some sense, then, the set of all
spheres with centres on the z axis 15 charactenized by the partial
differential equation (2.2.1.2).
However, other geometnical entities can be descnbed by the
same equation. For example, the equation
(2.2.1.3)
r'."+I}I_! ={1"—ﬂlllﬂﬂzﬂ
in which both of the constants ¢ and o are arbitrary, represents the
zet of all right circular cones whose axes coincide with the line Oz,
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If we differentiate equation (2.2.1.3) first with respect to x and then
with respect to ¥, we find that.

plz—c)tan’ & = x, q{z—c}mr:’tr:}r (2.2.1.4)
and, upon eliminating ¢ and « from these relations, we see that for
these cones also the equation (2.2.1.2) is satisfied.

MNow what the spheres and cones have in common is that
they are surfaces of revolution which have the line Oz as axes of
symmetry. All surfaces of revolation with this property are
characterized by an equation of the form

(2.2.1.5)

2= f(x"+)7)
where the function fis arbitrary. Now if we write x” + _1-':' = y and
differentiate equation (2.2.1.5) with respect to x and v,
respectively, we obtain the relations

p=2x1"(u), i =23 (u)

where f ‘fu) = df /du, from which we obtain equation (2) by
eliminating the arbitrary function f{n).

Thus we sec that the function # defined by each of the
equations (2.2.1.1), (2.2.1.3), and (2.2.1.5} 1%, in some Sense, a
“solution™ of the equation (2.2.1.2),

We shall now generalize this argument slightly. The
relations (2.2.1.1} and (2.2.1.3) arc both of the type

(2.2.1.6)

F(x,y,z,a.b)=0
where a and b denote arbitrary constants. If we differentiate this
equation with respect to x, we obtain the relation

(22.1.7)
ai+.p'-af-=ﬂ, E+q£=ﬂ
o & &

The set of equations (2.2.1.6) and (2.2.1.7) constitute three
equations involving two arbitrary constants a and b, and, in the
general case, it will be possible to eliminate a and b from these
equations to obtain a relation of the kind. )

(2.2.1.8)
flx, vz, p.q)=0
showing that the system of surfaces (2.2.1.1) gives rise to a partial
differential equation (2.2.1.8) of the first order.

The obvious generalization of the relation (2.2.1.5) is a
relation between x, y and z of the type

(2.2.1.9)

Flu,v)=10
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where u and v are known functions of x, v and z and F is an
arbitrary function of u and v. If we differentiate equation (2.2.1.9)
with respect to x and y, respectively, we obtain the equations

mlz 2 wla &’

ala a e ala

i

and if we now eliminate &F/du and &F/ & from these equations,
we obtain the equation

d(n,v)  Nuy)  Hw,v)
=+ - 22.1.10

Py Tazn dny) e
which is a partial differential equation of the type (2.2.1.8).

It should be observed, however, that the partial differential
equation (2.2.1.10) is a lincar equation; i.e., the powers of p and g
are both unity, whereas equation (2.2.1.8) need not be lincar. For
example, the equation

(x=a) +(y=0P +z' =1

which represents the set of all spheres of unit radius with centre in
the plane xOy, leads to first-order non-linear differential equation

221+ pt +q' )=

2.2.2. Cauchy’s Problem for First-order Equations

Though a complete discussion of existence theorems would
be out of place in a work of this kind, it is important that, even at
this elementary stage, the student should realize just what is meant
by an existence theorem, The business of a existence theorem is to
establish conditions under which we can assert whether or not a
given partial differential equation has a solution at all; the further
step of proving that the solution, when it exists, is unique requires a
unigueness theorem. The conditions to be satisfied in the case of a
first-order partial differential equation are conveniently crystallized
in the classic problem of Cauchy, which in the case of two
independent variables may be stated as follows:

Cauchy 's Problem. IT
(&) xofg), yelay) and zofgy) are functions which, together with
their first derivatives, are continuous in the interval M defined by

Hp < = g
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(b) And if Fix, ¥. . p. q) i a continuwous function of x, v, 7,
p and q in a certain region U of the xvzpg space, then it is required
1o establish the existence of the functions éf, y) with the following
properties:

(1) (x, ¥) and its partial derivatives with respect to x and y
are continuous function of x and y in a region R of the xv space.

(2) For all values of x and v lying in R, the point /x. » #x
¥ i, ¥, dhix, y)f lies in U and

Flx, y.#(x, 30,8, (x, )8, (x. )= 0

; EI}IIJFM a]l:tm b:lunii::g to the interval M, the point [xaf,
Vol i) ng to the region R, and

P, (), yo ()} = 2,

Stated geometrically, what we wish to prove 1s that there
exists a surface 2 = @k, 1) which passes through the curve I whose
parameiric equanons are

x=xg(pd  y=wlph z=z{u), (2.2.2.1)

and at every point of which the direction (. g. -1} of the normal is
such that

Flx,y.z,pq) = (2.2.2.2)

We have given only one form of the problem of Cauchy.
The problem can in fact be formulated in seven other ways which
are equivalent to the formulation above, The significant point is
that the theorem can not be proved with this degree of penerality.
To prove the existence of the solution of equation (2.2.2.2) passing
through a curve with equations (2.2.2.1) it is necessary t0 make
some further assumption about the form of the function F and the
nature of the curve I'. There are, therefore, a whole class of
existence theorems depending on the nature of the special
pssumptions. We shall not discuss these existence theorems here
but shall content ourselves with quoting one of them to show the
nature of such a theorem. For the proof of it the reader should
consult pages 32 to 36 of Bernstein's monograph cited above. The
classic theorem in this ficld is that due to Sonia Kowalewski;

Theorem 1. If gfy) and all its derivatives are comtinuous
for'ly - yol < & if xo is a given number and 2o =gy, g = £ (o,
and if fix, v, z, g) and all ity partial derivatives are comlinuous in o
region 5 defined by

le—xof <& D-pl=d |g-ql=§
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them there exists a unigue furcrion ¢, v) such thar:
fa) &x, vl and all its particl deriwarives are confinuous in a
region R defined by
lx—xg| < & =l < S
(B For all ix, y} in B z = ¢x, y) is solution of the equation

a_f &
ﬂ[_ l..'l'l-l-'l,._l.!.lI

{e)For all values of y in the imterval |y = yo| < &, ¢xa ¥ = gl

Before passing on to the discussion of the solution of first-
order partial differential equations, we shall say a word about
different kinds of solutions, We saw in Sec. 2 that relations of the

type
Fix,v,z.a,b)=0 (2.2.2.3)

led to partial differential equations of the first order. Any such
relation which contains two arbitrary constants a and b and s a
solution of & parual different:al equation of the first order is said to
be a complete solution or a complete integral of the equation. On
the other hand any relation of the type

Flu, vi=0 (2.2.2.4)

involving an arbitrary function F connecting two known functions
u and v fo x, ¥ and z and providing a solution of a first-order partial
differential equation is called a general solution or a general
integral of that equation.

It is ohvious that in some sense a general integral provides a
much broader set of solutions of the partial differential equation in
guestion than does a complete integral. We shall see later,
however, that this is purely illusory in the sense that it is possible to
derive a general integral of the equation once a complete integral 15
known,

2.2.3. Linear Equations of the First Order

We have already encountered linear equations of the first
order in Sec. 2, They are partial differential equations of the form
Pp+Qgq=R (2231)

where P, Q and K are given functions of x, y and z {(which do not
involve por q), p denotes & 7 & g denotes &/ &, and we wish to
find a relation between x, ¥ and z involving an arbitrary function.
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The first systematic theory of equations of this type was given by
Lagrange, For that reason equation (2.2.3.1) is frequently referred
to as Lagrange’s equation. Its generalization to n independent
variables is obviously the equation

(2.2.3.2)

where X, Xa, ..., X, and Y are functions of n independent
variables xy, x3, ..., X, and a dependent variable f; p; denotes &1 /By,
(i=1, 2, ..., n). It should be observed that in this connection the
team *lincar™ means that p and q (or, in general case, py, P2 -..0 Pa)
appear to the first degree only but P, ), R may be any functions of
%, ¥. and z. This is in contrast to the situation in the theory of
ordinary differential equations, where z must also appear linearly.
For example, the eguation
& & 5
I—+p—=I"+%

ox
15 linear, whereas the equation

dz
[ LR

is not,
The method of solving linear equations of the form (2.2.3.1) iz
contained in Theorem 2,

Theorem 2: The general solution of the linear partial differential

equation

Pr+g=R (2.2.3.1)
is

Flu,v)=0 (2.2.3.3)

where F is an arbitrary function and a(x, »,z) = ¢, and
vix, ¥.2) = ¢, form a solution of the equations

We shall prove this theorem in two stages;

{a) We shall show that all integral surfaces of the equation (2.2.3.1)
are generated by the integral curves of the equations (2.2.3.4);

(b) and then we shall prove that all surfaces generated by integral
curves of the equations (2.2.3.4) are integral surfaces of the
equation (2.2.3.2).
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(a) If we are given that z = f(x, ¥) is an integral surface of the
partial differential equation (2.2.3.1), then the normal to this
surface has direction cosines proportional to {p.g=1) and
the differential equation (2.2.3.2) i5 no more than an
analytical statement of the fact that thiz normal 1s
perpendicular to the direction defined by the direction ratios
(F.0.R). In other words, the direction (P, R)is

tangential to the integral surface 2 = f(x, ¥}

If therefore, we start from an arbitrary point M on the
surface and move in such a way that the direction of motion is
always (P, {),R), we trace out an integral curve of the equation
(2.2.3.4) and since P, () and R are assumed to be unigue, there will
be only one such curve through M. Further. since (P, Q, R} is
always tangential to the surface, we never leave the surface. [n
other words, this mtegral curve of the equations (2.2.3.4) lies
completely on the surface.

We have therefore shown that through each point M of the
surface there is one and only one integral curve of the equations
(2.2.3.4) and that this curve lies entirely on the surface. That 15, the
integral surfasce of the equation (2.2.3.1) is gencrated by the
integral curves of the equations (2.2.3.4).

(b) Second, if we are given that the surface z= f{x, y)is
generated by integral curves of the equations (2.2.3.4), then we
notice that its normal at a general point (x, v.z) which is in the

direction {%,E,—l] will be perpendicular 1o the direction

(P, 0, R)of the curves generating the surface. Therefore

_F E + QE -F=10

v

which is just another way of saying that z = f(x, »)i% an integral
surface of equation (2.2.3.1).
To complete the proof of the theorem we have still o prove that
any surface generated by the integral curves of the equations
{2.2.3.4) has an equation of the form (2.2.3,3). Let any curve on the
surface which is not a particular member of the system.

wx, y.2)=¢, wWx, p o) m e, (2.2.3.5)
have equation
#ix. p,z)=0, plx, y,z)=0 (2.2.3.6)

If the curve (2.2.3.5) 15 a generating curve of the surface, it will
intersect the curve (2.2.3.6). The condition that it should do so will
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be obtained by eliminating x, y and z from the four equations
(2.2.3.5) and (2.2.3.6). This will be a relation of the form

Fiey,ep) =10 (2.23.7)
between the constants ¢ and ¢3. The surface is therefore generated
by curves {2.2.3.5) which obey the condition (2.2.3.7) and will
therefore have an eguation of the form

Flu,vi=0 (2.2.33)

Conversely, any surface of the form (2.2.3.3) is penerated
by integral curves (2.2.3.5) of the equations (2.2.3.4), for it is that
surface generated by those curves of the svstem (2.2.1.5) which
satisfv the relation (2.2.3.7).

This completes the pro of the theorem.

We have used a peometnical method of proof 1o establish
this theorem because it seems o show most clearly the relation
between the two equations (2.2.3.1) and (2.2.3.4).

2.2.4. Integral Surfaces Passing through a Given
Curve

T E———— e ———— e TR W Y S, i o ik e i s i e o ——— ——

Earlier we studied a method of finding the general solution
of a lineor differential equation. We shall now indicate how such a
general solution may be used to determine the integral surface
which passes through a given curve, We shall suppose that we have
found two solutions

wx yIl=e, W, pil=re, i(2.2.4.1)
of the auxiliary equations (2.2.3.4). Then, as we saw in that section,
any solution of the corresponding linear equation is of the form

Fluv)=10 (2.2.4.3)
arising from a relation
Fic,.c;}=0 (2.2.4.3)

between the constants ¢y and ¢z, The problem we have (o consider
i5 that of determining the function F in special circumstances,

If we wash to find the integral surface which passes through
the curve ¢ whose parametric sguations ane

x = x{t), ¥ = plr), = z(r)

where 1 is a parameter, then the particular solution (2.2.4.1) must
be such that

wleln), 200} = ¢, vl pe) 20} = ¢,
We therefore have two equations from which we may eliminate the
gingle variable t to obtain a relation of the type (2.2.4.3). The
solution we are seeking is then given by (2.2.4.2).
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2.2.5. Surfaces Orthogonal to a Given System of
Surfaces

An interesting application of the theory of linear partial
differential equations of the first order is to the determination of the
systems of surfaces orthogonal to a given system of surfaces.
Suppose we are given a one-parameter family of surfaces
characterized by the equation

Jfix,y,2)-¢c (2.2.5.1)
and that we wish to find a system of surfaces which cut each of
these given surfaces at right angles.

The normal at the point (x, ¥, 2) to the surface of the system
(2.2.5.1) which passes through that point is the direction given by
the direction ratios

|y Y
(P.0.R) ( = a:] (2252)
[f the surface with equation

z =g¢x, ¥) (2.2.53)

cuts each surface of the given system orthogonally, then its normal
at the point (x, y.z) which is in the direction

& & )
ox oy J
is perpendicular to the direction (F,Q,R) of the normal to the

zurface of the set (2.2.5.1) at that point. We therefore have the
linear partial differential equation

i i
P— —a R 5.4
.fj;-+ﬂﬂ:r' (2.2.54)

for the determination of the surfaces (2.2.5.3). Substituting from
equation (2.2.5.2), we see that this equation is equivalent to

Hoe ¥ &
M dx vy &

Conversely, any solution of the linear partial differential equation
{2.2.5.4) is orthogonal to every surface of the system characterised
by equation (2.2.5.1), for (2.2.5.4) simply states that the normal to
any solution of (2.2.5.4) is perpendicular to the normal to that
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member of the system (2.2.5.1) which passes through the same
point.

The linear equation {2.2.5.4) 15 thercfore the gencral partial
differential equation determining the surface orthogonal to
members of the system (2.2.5.1); i.e., the surfaces orthogonal to the
system (2.2.5.1) are the surfaces generated by the integral curves of
the equations

& _ & _ &

fde offevy Il

(2.4.5.5)

— T r e T i e

2.3. MNon-linear first order PDE

2.3.1. Equations of first order

We tum now to the more difficult problem of finding the solutions
of the partial differential equation
(2.3.1.1)
Fix,y,z,p.q) =0

in which the function F is not secessarily lirear in p and a.
The partial differential equaitoq of the two parameter system is of
the farm

(2.3.1.2)
iz yz.a.byul

Any envelope of the system (2.3.1.2) touches at each of its points a
member of the system. It posses therefore the same set of values
(x, 7,2, p.g) a5 the particular surface, so that it must also be a
solution of the differential equation. In this way we are led to three
classes of integrals of a partial differential equation of the type
(2.3.1.1).

(@) two parameter systems of surfaces Sz v zabh=0

such an integral ts called a complete integral.

(b) If we take any one-parameter sub svstem f(x, yv.2.a,.8a))=0
of the system (2.3.1.2) and form its envelope, we obtain a solution
of equation (2.3.1.1). When the function ¢{a)which defines this
subsystem is arbitrary, the solution obtained is called the general
integral of (2.3.1.1) corresponding ¢ the complete integral (2.3.1.2).
When a definite function @{a)is used, we obtain a particular case
of the general integral.

() If the envelops of the two-parameter svstem (2.3.1.2) exists, it
is also a solution of the equation (2.3.1.1); it is called the singular
integral of the equation.
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We can illustrate these three kinds of solution with
reference to the partial differential equation
(23.1.3)

214 p' +97) =1
We have
(2.3.1.4)
(x—a) +(y-a) +2' =1

was a solution of this equation with arbitrary a and b. Since it
contains two arbitrary constants, the solution (2.3.1.4) i3 thus a
complete integral of the equation (2.3.1.3).

Putting b=a in equation (2.3.1.4), we obtain the one parameter
subsystem

(x—a) +({y-a) +2' =1
whose envelope is obtained by eliminating a between this equation
and

xty-2a=({

(2.3.1.5)
0 that it has equation (x = y)* + 227 =2
Differentiating both sides of this equation with respect to x and v
respectively, we obtain the relations

2zp=y-x, 2rg=x-y
from which it follows immediately that (2.3.1.5) is an integral
surface o the equation (2.3.1.3). It 1% a solution of type (b); 1. il is
a peneral integral of the equation (2.3.1.3)

The envelope of the two-parameter system (2.3.1 3) is
obtained by eliminating a and b from equation (2.3.1.4) and the two
equations

x-a={) y-b=0
i.e., the envelope consists of the pair of planes = = £1. It is readily
verified that these planes are integral surfaces of the equation
{2.3.1.3); since they are of type (c) they constitute the singular
integral of the equation.

It should be noted that, theoretically, it is always possible to
obtain difTerent complete integrals which are not equivalent to each
other. i.c., which cannot be obtained from one another merely by a
change in the choice of arbitrary constants. When, however, one
complete integral has been obtained, every other solution,
including every other complete integral, appears among the
solutions of type (b) and (¢} corresponding to the complete integral
we have found.

To illustrate both these points we note that

(y-mx—c)® =(1+m*X1-2%) (2.3.1.6)
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is o complete integral of equation (2.3,1.3), since it contains two
arbitrary constants m and ¢, and it cannot be derived from the
complete integral (2.3.1.4) by a simple change in the values of a
and b. It can be readily shown, however, that the solution (2.3.1.6)
is the envelope of the one-parameter sub system of (2.3.1.4)
obtained by 1aking b=ma-tc.

2.3.2. Compatible system of first order equations

We shall next consider the condition o be satisfied in order
that every solution of the first-order partial differential equation

(2.3.2.1)
f ey zp.g)=0
is also a solution of the equation (2.3.2.2)
gy, pq =0
When such a situation arises, the equations are said to be
compatible.
If (2.3.2.3)
ife)
J=—=—==z(
o)
we can solve equations (2.3.2.1) and (2.3.2.2) 1o obtain tee explici
EXPressions (2.3.2.4)
p=Hnpzh q = pir. .z

for p and g. The condition that the pair of equations (2.3.2.1) and
(2.3.2.2) should be compatible reduces then to the condition that
the system of equations (2.3.2.4) should be complexly integrable,
Le., that the equation

et + ey — diz = 0
should be integrable. We have that the condition that this equation
is integrable is

Fl=p ) +p(d )=y, -¢,)=0
which is equivalent to

w, + gy, =g, + g, (2.3.2.5)
Substitmting from equations (2.3.2.4) into equation (2.3.2.1) and
differentiating with regard to x and z, respectively, we obtain the
equations

Jr‘ * _p#"'fr‘-l"": =0

S+ fp, =0
From which it is readily deduced that

Jovd, + Flg v )+ M, # 8y, )=0
Similarly we may deduce from equation (2.3.2.2) that
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g, v+ 8,06 +98.)+ g (v, +éy.)=0
Solving these equations, we find tha

|| g) oS8l
+ == + 2326
ikt J{a{x.pa ﬂ[:.pl} =2
where J is defined as equation (2.3.2.3).

If we had differentiated the given pair of equations with respect to
y and z, we should have obtained

__djafm M} 3997
#, +yd, _f{ﬁ}np”wa{:‘p} { )
g0 that, substituting from equations (2.3.2.6) and (2.32.7) into
equation (2.3.2.5) and replacing @.y by p. q respectively, we sce
that the condition that the two conditions should be compatible 1s
that

[f.g]=0 (232.8)
where [J‘,g:[n '?!:_J'.E:i_l_ au"gj + '51..-"'1.!:'1

Axnp) © Map) Blzg)
{23.29)

Example. Show that the cquation
xp=a, «  Ixp+yg)=2xy
Are compatible and solve them.
Solution: In this example we may take
f=xpmygg=z(xp+y)i-2xy sothat

E{iﬂ =" @j = =yt ﬂ-‘r..'_-f_]' = 2y
Awp) O A T Arg
af.8) _
&z.q) oE

From which it follows that
[£.g)=xptyg—xp)=0
since  xp*yqg. The equations are therefore compatible.
It is reedily shown that pVy/z,g=x/z 5o that we have o
solve
zdz=ydx+xdy
which has solution
z'=cy+2xy
where ¢, is a constant.

2.3.2.1. Self Assessment Questions:

. Show that the cquations fix,y.p.q)=0, g(x.y.pq)=0 are
compatible if
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afig) , A8 _
&x,p)  Ap.q)
Verify that the equations p=P{x.y), g=(Xx.y) are compatible if

oF 2
& o

2. 1f w, = Buldc,u, =8u/dy,u, =!8, show that the equations
xyzuoupum)=0,  glxyzu,uu)=0

are compatible if
af.e) élf.g) olf.g) -0
'ﬁ--rr""'l::' a‘:..!"'r“r} '3{-1-'-. H:I

2.3.3. Charpit's Method

A method of solving the partial differential equation
fixy.zpa)=0
(23.3.1)

due to Charpit, is based on the considerations of the last section.
The fundamental idea in Charpit's method is the introduction of a
second partial differential cquation of the first order

g {x.y,z.pqF0
(2.3.3.2)

which contains an arbitrary constant a and which is such that
{a) Equations {2.3.3.1) and {2.3.3.2) can be solved to give

ppix.y.za), qegix.y,28),
{b) The equation
dz=p{x.yza)dx+ qix.y,z.a)dy

(233.3)
is integrable.
When such a function g has been found, the solution of equation

(2.3.3.3)
(2.3.3.4)

f{xﬁmbH‘J

containing two arbitrary constanis a, b will be a solution of
equation (2.3.3.1).

It will be seen that the equation (2.3.3.4) 15 a complete integral of
equation (2.3.3.1).

The main problem then is the determination of the second equation
(2.3.3.2), but this has already been solved in the last section, since
we need only seek an equation g=0 compatible with the given



30

ASf.g) Af.e)_,
o(x,p)  Ay.q)
Verify that the equations p=P(x,y), g=Q{x,y)} arc compatible if

ar 2
By o

2.0F iy = 0w/ dx,u, =8u/dy,u, =Puldz, show that the equations
lx.yzuupu=0,  glayzu,uguF0

are compatible if
Afe), We) 08 _,
Ara) o) Az

2.3.3. Charpit's Method

A method of solving the partial ditferential equation
f{xy.2,pq)=0
(2.3.3.1)
due to Charpit, is based on the considerations of the last section.
The fundamental sdea i Charpit’s method is the introduction of a
second partial differential cquation of the first order

B (%, y,.2p =0
(2.3.3.2)

which containg an arbitrasy constant a and which 15 such that
(a) Equations (2.3.3.1) and (2.3.3.2) can be solved to give

p=p{x.y,z.a), qeqix.y,za),
{b) The equation
dz=p(x.y,za)dx+ q(x,y,z.apdy

(2.3.3.3)
is integrable.
When such a function g has been found, the solution of equation

(2.3.3.3)
(2.3.3.4)

Fix.y,z.b)=0

containing iwo arbitrary constants a, b will be a solution of
equation (2.3.3.1).

It will be seen that the equation (2.3.3.4) is a complete integral of
equation (2.3.3.1).

The main problem then is the determination of the second equation
(2.3.3.2), but this has already been solved in the last section, since
we need only seek an equation g=0 compatible with the given
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2.3.3.1. Self Assessment Questions:

Find the complete integrals of the equations
L (P +q*)y=qz
2. p=(z+q)’

2.3.4. Special types first order equations

In this section we shall consider some special types of first-onder
partial differential equations whose solution may be obtained casily

by Charpit’s method.
(a) Equations Involving only p and q. For equations of the type
fip.q=0 (2.3.4.1)

Charpit’s equations reduce 1o
& dy_ daz _dp N

L, f, f.vaf, 00
An obvious solution of these equations is

p-a (2.3.4.2)
the corresponding value of q being obtrined from (2.3.4.1) in the
form

f{a,q)=0 (2.3.4.3)
s0 that g=Cya)

a constant. The solution of the equation is then
z=ax+(a)y+b (2.3.4.4)

where b is a constant.

We have chosen the eguation dp=0 to provide our second equation.
In some problems the amount of computation involved is
considerably reduced if we take instead dg=0, leading to g=a.

{b) Equations Mot involving the Independent Varables. If the
partial differential equation is of the type
f{z.p.q)=0 (2.3.4.5)
Charpit’s equations take the forms
fo 1y B+, -of, -4,
The last of which leads to the relation

p=aq (2.3.4.6)
Solving (2.3.4.5) and (2.3.4.6), we obtain expressions for p, g from
which a complete integral follows immediately.

(c) Separable Equations. We say that a first-order partial
differential is separable if it can be"written in the form
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fix.pl=gly.q) (2.3.4.7)
For such an equation Charpit’s equations become

& _d& & _dp _ dg

.-rr- _gg F.lr-lp —ii'E.. --IIrJ' _EI
S0 that we have an ordinary differential equation

P

* [nxand p which may be solved to give p as a function of x and
an arbitrary constant a. Writing this equation in the. form
Sodp + _.I"{.:ir=l.l we sec that its solution is f{x,p)=a.. Hence we

determine p, q from the relations

{(x.p)a, g(v.qFa
and then proceed as in the general theory.,

(2.3.4.8)

(d} Clariaut Equations. A first order partial differential equation
i5 said to be of Clairaut type if it can be written in the form

Z=px+qy+i{p.q) {2.3.4.9)
The corresponding Charpit equations are
& __d d b _dg

x+f, y+f, pxrgpipl,+gf, 0 0
S0 that we may take p=a, g=h. If we substitute these values in
{2.3.4.9), we get the complete integral

z=mc-+hy+1(a,b) (2.3.4.10)
as is readily verified by direct differentiation.

T T i

Find complete integrals of the equations
1. p+g=pg

2.r=p'-g*

3. pg=p+q

4. plglx’ +y7)=p" +q

5. prat 427y =x'gi (X7 4+ y7)

2.3.5. Jacobi's Method

Another method, due to Jacobi, of solving the partial differential
equation

Flx.yzpqy0 (2.3.5.1)
depends on the fact that if

ulx,y,z)=0 (2.3.5.2)
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i5 @ relation between x, v and z, then
p=-=t, g=--1 (2.3.5.3)
i, iy

where u; denotes dw /& (i = 1,2,3). If we substitute from
equations (2.3.5.3) into equation (2.3.5.1), we obtain a partial
differential equation of the type

f{x.y .z =0 (2.3.54)

in which the new dependent variable u does not appear.

The fundamental idea of Jacobi®s method is the introduction
of two further partial differential equations of the first order,

Blxyzu 0, higyzonuFEd (2355

involving two arbitrary constants a and b and such that

(a) Equations (2.3.5.4) and (2.3.5.5) can be solved for

(b) The equation

du=udx + wdy + uydu (2.3.5.6)
obtained from these values of u,, uz, Uz is integrable.
When these functions have been found, the solution of equation
(2.3.5.6) containing three arbitrary constants will be a complete
integral of (2.3.5.4). The three constants are necessary if the given
equation is (2.3.5.4); when, however, the equation is given in the
form (2.3.5.1), we need only two arbitrary constants in the final
solution. By taking different cheices of our third arbitrary constant
we get different complete integrals of the given equation,
Ag in Charpit’s method, the main difficulty is in the determination
of the auxiliary equations (2.3.5.5). We have, in effect, to find two
equations which are compatible with (2.3.5.4). Now g and h would
therefore have to be solutions of the linear partial differential
equation

B, 0%, 8 L % L O 5.

foge* Mg Mg —fp - et -fZl=0  (2357)
which has subsidiary equations

E_n}-_da_du,_dul_du'j

fu, fu, fu, -F -p -F
The procedure is then the same as in Charpit’s method,
The advantage of the Jacobi method is that it can readily be
generalized. If we have to solve an equation of the type

..'r| {I| 5 I.! :'""Ill :'Hl e qu } it U

(2.3.5.8)

(2.3.5.9)
where w denotes dudx, (i =12..,n), then we find n-1 auxiliary
functions Sas fyae f, from the subsidiary equations

de, ey, _dr, dw _ dy, du,

S, fuy, T fu, - f —fn O —f
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involving n-1 arbitrary constanis. Solving these for ug, us, ..., Uy we
determine u by integrating the Plaffian equation

du =y ud,
=l
the solution so obtained containing n arbitrary constants. On the
other hand, Charpit’s method cannot be generalized directly.

2.3.5.1.5elf Assessment Questions:

Saolve the problems by Jacobi's method
1. (p*+q"y=gz

2. p=(zqy)’

3. 2" =pgxy

4, xpt+3y —2{2-1{1:{1}

5. A +6xz-2=0

2.4. Second order PDE
2.4.1. Linear equations with constant co-efficient

We shall now consider the solution of a very special 1vpe of linear
partial differential equation, that with constant coefficients. Such
an equation can be written in form

F(D, D"z=f{x.y) (2.4.1.1)
where F(D,D") denotes a differential operator of the type
F(D,Dy=3%, ¥.¢,DrD" (24.12)

in which the quantities c,. are constants, and D =3/ o, D' = @/ dy.
The most general solution i.e., one containing the correct number
of arbitrary elements, of the corresponding homogeneous linear
partial differential equation

FiD,DYz=0 (2.4.1.3)
ig called the complementary function of the equation (2.4.1.1), just
as in the theory of ordinary differential equations. Similarly any
solution of the equation (2.4.1.1) is called a particular integral of
(2.4.1.1).
As in the theory of linear ordinary differential equations, the basic
theorem is:

Thewrem 1. [f u is the complementary function and z, a particular
integral of a linear partial differential equation, then u+z; is a
general solution of the equation.

The proof of this theorem is obvious, Since the equations (2.4.1.1)
and (2.4.1.3) are of the same kind, the solution w+z; will contain
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the correct number of arbitrary elements to qualify as a general
solution of (2.4.1.1). Also

F(D,D"Yu =0, F(D,D)z, = f(x,y)
so that F(D,D')u+z)= f(x,y)
showing that u+z; is in fact a solution of equation (2.4.1.1). This
completes the proof.

Another result which is used extensively in the solution of
differential equations is:

Theorem 2. If u, uy,...,u, are solutions of the homogeneous linear
partial differential equation F(D, D")z=0, then

Zfrnr
Fal

where the ¢,'s are arbitrary constants, is also a soiunon.

The proof of this theorem is obvious. Since
F(D,D')ec,u,)=c,F(D,DVW,

and  F(D,D)Y v, =Y F(D,DW,
Fel Fall
for any set of functions v,. Therefore

F(D,DYY ¢,u, =Y F(D,D')c,u,)
ra]

Fa]

= ic,F[D._,D'}ur
Fml

= ()
We classify linear differential operators F(D,D’) into two main
types, which we shall treat separately, We say that:
(a) F(D,D") is reducible if it can be written as the product of
linear factors of the form D+aD’+b with a, b constants;
(b) F{D,D") is irreducible if it cannot be written.
For Examgll:, the operator
DD
Which can be written in the form
(D+D')(D-D")
is reducible, whereas the operator
DD _
which cannot be decomposed into linear factors, is irreducible,

(a) Reducible Equations: The starting point of the theory of
reducible equations is the result
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Theorem 3. If the operator F(D,D") is reducible, the order in
which the linear factor occur is unimportant.

The theorem will be proved if we can show that

(e De LET 4 o, D 07 4y b, D B 0T 4, W D4 ) (24.1.4)
for any reducible operator can be written in the form

ﬂDJﬂ=fﬁmﬂ+iﬂWﬁ] (2.4.1.5)

Ful
and the theorem follows at once. The proof of (2.4.1.4) is
immediate, since both sides are equal to

oo D+ (a8, +ea, 5,)DD+ 8,8,

D7 4iya, +ya) Dy, B, +r.0)0 +y.r,

Thearem 4. If :::,D+,.t§,ﬂ'+;:, 15 a factor of F(D,D") and ¢, (&) 15
an arbitrary function of the single variable £, then if @, =0,

—oxp —2cF -
Hr - “{ ﬂ, ]‘rilﬂrr I::.Ir-b'll]'

is & solution of the equation F{D. DYz =0

By direct differentiation we have
Du, = —Lu, + i, I:Ip[— Fet |y
ﬂlr

i

F

Dy &=, l::-:p[— Z;I]f[ﬁ,f—ﬂ'.-.ﬂ

(Ax—ay

So that (o, 0+ 8.0 +p,Ju, =0 (2.4.1.6)
MNow by Theorem 3
FDL D, ={f[f-=lﬂ+.ﬂ.£"+;.]}¢a,ﬂ+.ﬁ,uf+ ru, (24.1.7)

the prime after the product demoting that the factor corresponding
to 5=r is omitied. Combining equations (2.4.1.6) and (2.4.1.7) we
see that

FiD, [V, =0
which proves the theorem.

Theorem 5. If # 0¥+y_ isafactorof F(D, D) and 4 (F) isan
arbitrary function of the single vanable £, thenif 5 =0

u, ==x:{— ;—"'} (8,)

15 a solution of the equation F{D, Dz =0
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In the decomposition of F{D, D) into linear factors we may get
multiple factors of the tvpe (@, D+ 8,D +y,)". The solution

corresponding to a factor of this type can obtained by a simple
application of Theorem 4 and 5. For example if n=2 we wish to
find solutions of the equation

(2.4.1.8)
(@, D+ B0 +y,)z=0
If we let
Zm(a, D+ D +y )z
Then (x, D+ 80X +p ) =0

Which according 10 Theorem 4 has solution
L '“-F{- L g (f.x-a,y)

x,
If &, #0. To find the corresponding function z we have therefore
to solve the first-order lincar partial differential equation

i od 4
&, —+ ﬂr_ +F.Z e u‘#! {H.Fx _'ﬂ'rj'l} {1‘4‘"“'}]

che oy
The auxiliary equations are
o _d & .
@, B, =rz+e™ g (fx-a.y)
With solution
Bx-aymc,
Substituting this in the auxiliary equations, we get the
dx dz

@, =yz+e™' "¢ (c,)
Which is a first order linear equation with solution

= 1 {j'_f-:. Jx+c, }e"’"""

al‘

Equation (2.4.1.9) and hence equation (2.4.1.8) therefore has
solution

z={xd,(Fx-a )+ fr-a )y
Where the functions @ v, are arbitrary.

Theorem 6. If (a, D+ 3.0 +y,) (@, «0) is a factor of F(D, D"
and if the functions @,,.......,ém are arbitrary, then

ﬂ-l{—% ; x'§_(B.x—a,y)

is a solution of F(D, D")z=0.
Similarly the generalisation of Theorem J is:
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Theorem 7. If (#,0+y,)" is a factor of F(D, D") and if the
functions @, ,......,ger are arbitrary, then

Y.V e
ﬂrﬂi-— ¢, (8 x)
lﬂr 1wl # ﬁ

Is a solution of F(D, D")=0

We are now in a position to state the complementary function of
the equation (2.4.1.1) when the operator is reducible. As a result of
Theorem 4 and 6, we see that if

F(D,D" = [ (@, D+ B.D'+7,) (2.4.1.10)

rul
and if none of the is zero, then the  comesponding
complementary function is

H=i£‘.{ -"—f{]i;'-'ﬁn;ﬁ,pg,y} (24.1.11)

Fml I, Vi
where the functions ¢, (s=1..m:r=\L...n arc arbitrary. If

some of the o«'s are 2zero the necessary modifications to the
expressions (2.4.1.11) can be made by means of Theorem 5. From
equation (2.4.1.10) we see that the order of equation (2.4.1.3) 1s
myHmgt,. M. Since the solution (2.4.1.11) contains the same
number of arbitrary functions, it has the correct number and is thus
the complete complementary function.

(b) Irreducible equations: When the operator F{D,D") is irreducible,
it is not always possible to find a solution with the full number of
arbitrary functions, but it is pessible to construets selutions which
contain as many arbitrary constanis as we wish. The method of
deriving such solution depends on & theorem which we shall now
prove, This theorem is true for reducible as well as irreducible
wperators, but it is only in the irreducible case that we make use of
iL

Theorem 7. F(D, DVe™" u F(a,b)e™"
The proof of this theorem follows from the fact that F(D, D) is
made up of terms of the type
e ¥D®
and D" (e™**) = g"e™*, D (™™ )= b'e™™
so that (¢ D" D" We™ ™) = (¢, a"b'e™"
The theorem follows by recombining the terms of the operator

A similar result which is used in determining particular integrals is;
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Theorem 8. F(D, D)e™ " §(x, y)}= e=* F(D+a,D' + b)g(x.y)
The proof is direct, making use of Leibnitz’s theorem for the r th
derivative of a product to show that

D (eg)=3 "C (D=} D"¢)
il

(gcaorr)
T

=e"(D+a)¢

To determine the complementary function of an equation of the
type (2.4.1.1) we split the operator F(D, D) into factors. The
reducible factors are treated by method (a). The irreducible factors
are treated as follows. From theorem 8 we see that ™™ is a
solution of the equation

F{D, [¥)z=0 (2.4.1.14)
Provided F{a,by=0, so that
zm Er:, expla,.x+b,¥) (2.4.1.15)
gl

in which a,, b,, ¢, are all constants, is also a solution provided that
are connecied by the relation
F(a, b, =0 (2.4.1.16)
In this way we can construct a solution of the homogeneous
equation (2.4.1.14) containing as many arbitrary constants as we
need. The senes (2.4.1.15) need not be finite, but if it is infinite, it
is necessary that it should be uniformly convergent if it has to be,
in fact, a solution of equation (2.4.1.14). The discussion of the
convergence of such a series is difficult. involving as it does the
coefficients ¢, the pairs (a,, b;) and the values of the variables x
and y.

2.4.1.1.5elf Assessment Questions:
Solve the equations

1, rs-2=e""
2. r-s+2g-z=x’y"
3. r4s-2t-p-2g=0

2.4.2. Characteristic curves

We shall now consider briefly the Cauchy problem for the second
order partial differential equation
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Rr+8Ss+Ti+ fix,v.2. p.q) =0 (24.2.1)
in which RS, and T are functions of x and ¥ onaly. In other words,
we wish to consider the problem of determining the solution of
equation (2.4.2 1) such that on a given space curve T it takes on
prescribed values of 2 and &/ 8n,where n is distance measured
along the normal to the curve. This latter set of boundary
conditions is equivalent to assuming that the values of x.y,2.p.q are
determined on the curve, but it should be noted that the values of
the partial derivatives p and q cannot be assigned arbitrarily along
the curve, For if we take the freedom equations of the curve T 1o
be

e (2.4.2.2)
x=x0r), ¥=)(r) r=zxr)
then we must have all points of ™ the relation
.. (24.2.3)

= Lyt iy My

(where z, denotes d, /df etc) showing that p, and g, are not
independent. The Cauchy problem iz therefore that of finding the

solutton of equation (1) passing through the integral stnp of the
first order formed by the planar elements (x,,»,,%;,. P q,) of the

curvel .

At every point of the integral stip p= p.(7).g, =¢,(r ), 50
that if we differentiate these equations with respect to 1, we obtain
the relations

p_|_=l".'l:u+.'|'_:|-'|:|. l}._=.‘l'.'l.'._+!_].'u

If we solve the three equations (1) and (4) fior r, s, t, we find that

§ r f R & T
A=l 0 -plete  and Aslx, w 0
I ¥ ~@ LU

[f A= 0 we can therefore easily calculate the expressions for the
second —order derivatives ry, 5, and 1, along the curve T

The third order partial differential coefficients of z can
similarly be caleulated at every point of [ by differentiating
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equation (2.4.2.1) with respect to x and y , respectively, making use
of the relations

etc., and solving as in the previous case.

Proceeding in this way, we can calculate the partial
derivatives of every order at the points of the curve T, The value of
the function z at neighbouring points can therefore be obtained by
means of Taylor's theorem for functions of two independent
variables. The Cauchy problem therefore possesses a solution as
long as the determinant A does not vanish. In the elliptic case
4RT-5" > 0,50 that A= 0 always holds, and the derivatives, of
all orders, of z are uniguely determined. It is reasonable 1o
conjecture that the solution =0 obtained is analytic in the domain of
analyticity of the coefficients of the differential equation being
discussed; constructing a proof of this conjecture was one of the
famous problems propounded by Hilbert, The proof for the lincar
case was given first by Bernstein; that for the general case (2.4.2.1)
was given later by Hopf and Lewy.

We must now consider the case in which the determinant A
vanishes. Expanding A ,we see that this condition is equivalent to
the relation

Ry; = Sy, + g =0 . (2.4.2.5)
If the projection of the curve I onto the plane z=0 15 a curve ¥
with equation

Ex. ¥ =, .. [2.42.6)

then we find that ,as a result of differentiating with regard to 1,

'ﬁrlﬂ '*‘;Ju:,- Fy = 0 (2427

Eliminating the ratio xo/y, between equations (2.4.2.5) and
(2.4.2.7),we find that the condition A=0 i5 equvalent to the
relation

A&, E)=0 ... (2.4.2.8)

where the function A{w,v)= Ru’ + Suv + Tv'

A curve » in the xy plane satisfying the relation (2.4.2.8) is called
a characteristic base curve of the parial differential equation (1),
and the curve I’ of which it is the projection is called a
charactenstic curve of the same eguation. The term characteristic is
applied indiscriminately to both kinds of curves, since there is
usually little danger of confusion ansing as a result.
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From the argument of Sec.2.4.3 it follows at once that there
are two families of characteristics if the given partial differential
equation is hyperbolic , one family if it is parabolic, and none if it
is elliptic.

As we have defined it, a characteristic is a curve such that,
given values of the dependent variable and its first-order partial
derivatives at all points on it ,Cauchy’s problem does not posses a
unigque selution We shall now show that this property is equivalent
to one which is of ore interest in physical applications namely, that
if there is a second-order discontinuity at one point of the
characteristic, it must persist at all points.,

To establish this property we consider a function ¢ of the
independent variables x and y which is continuous everywhere
except at the points of the curve C whose equation is

clx y)=c
where J(x,y) is any function (not necessarily the function &
defined above) with as many derivatives as necessary. If P, is any
point on this curve and F and P, are neighbouring points on
opposite sides of the curve (Fig 1), then we define the discontinuity
of the function ¢ at the point P, by the equation

(9], = lim_{#(R)-4(P,))

e (2.4.2.100
If the element of length along the directed tangent to the curve C at
the point F, is der, then

X
The tangential derivative of the function ¢ is defined to be
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ﬁ=ﬂmﬂmﬂ+ﬂi

doc oo By )
and it is readily shown that this is equivalent to the expression
j' i 'i;g_p ':ﬂ-}'_ﬁu'lfa {R:IIJ i [2421 1)
MR T H AR A YT

The tangential derivative al F, is therefore continuous if the
expression on the right hand side of this equation is continuous at
F, . and we say that d¢/deo is continuous on the curve C if this
holds for all poimts £, on C.

Now let us suppose that the function z(x, v) is a solution of
the equation (2.4.2.1) , where for simplicity .we shall suppose that
the function j is lincar in p and q. We shall assume in addition
that the function z(x, v) is continuwous and has continuous
derivatives of all orders required except that its second denvatives
are nod all continuous at all points of the curve C defined by
equation (2.4.29). In particular it 15 assumed that the first-order

parital derivatives =z, and =z, have continuous tangential

1 ¥
derivatives at all points of the curve C. It follows immediately from
equation(2.4.2,11) that if the tangential derivative & /do is

continuous at the point £, 50 also is the expression

25 R =24, (R)

WAy

Now another way of saying that a function is continuous is to say
that its discontinwty is zero at the point in question. We may
therefore write

[2.)&,(P)-[2, ]&.(R)=0

By considering the other tangential derivative dz /de, we may
similarly prove the relation

[z, ]&,(B)-[2, )& (B)=0

and hence that
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-inl-u-—[iﬂ'-l--nu-[fﬂl oo (2.4.2.12)

SR LRMR) £(R)

Letting each of the ratios in the equations (12) be equal o0 4, we
may write these equations in the form

[ze]=4E}R), [z, ]=AL(RXN,(R)
[z, ]=4£2(R) (24213

If we now transform the independent variables in our
problem from x and v to £ and p,where £ is the function
introduced through the curve C and » is such that for any function
wig, ) dy /do =g/ o . The quantity Aoccurmring in equation,
{13) wall then be a function of nalone; we shall now proceed o
determine that function.

Since 2, =28 + 22, 500, 4 T, 2L, ¥ 20,

and since z,and z, are continuous ( a result of the
continuity of z, and z }and z, and z,, are tangential derivatives,
we find that [z, | which by definition is equal to

Jim {z,(R)-z,(R)}

reducesto  lim_ (2, (R)E] ()2, (R (R))

50 that 1:3,‘]-[3;;]'5:{-&)
e [242.14)

A comparison of equation (2.4.2.14) with the eguation (2.4.2.13)
shows that the value of the quantity 4 occurring in these equations
is [ 2, | We began by assuming that there was a discontinuity in at
least one of the second derivatives; so A cannol be zero | and
hence neither can | z,, | at the point £,

If we transform the equation 1o the new variables £ and 7,

we get the equation (2.4.3.4) of Sec 2.4.3,and applying the above
argument to it, we see that
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[z, |A(2.2,)=0
showing that

Ag, ¢,)=0 . (24.2.15)

and thereby proving that the curve C is a characteristic of the
equation . If we differentiate the transformed equation with regard
to &, take equation (13) into account .and note that only the terms
m z,, and z, can be discontinwous ,we can use a similar

argument to show that

2B, £t 1, ) 2y | HANEE) - Fid[ 20 ] =0
remembering that [E‘H] is A and that iis a function of # aiu;mr;.
we see that this last eguation 1= equivalent to the ordinary
differential equation

di
e B _.!
i gin)

which has a golution of the form
L |
Al) = Ao yexpt [2(E)d¢)
L

So far we have considered onlv single characteristic
curves; now let us consider briefly all the characteristic curves on
an integral surface L of the differential equation (2.4.2.1) .If the
equation is hyperbolic at all points of the surface there are two
one-parameter fumilies of characteristic curves on . It follows
that two integral surfaces can touch only along a characteristic, for
if the line of contact were not a charactenistic, 1t would define
unique values of all partial derivatives along its length and would
therefore vield one surface, not the postulated two. Along a
characteristic curve, on the other hand, this contradiction does no
occur. In the case of elliptic equations, for which there are no real
charactenstics, the comesponding result would be that two integral
surfaces cannot touch along any line.

2.4.2.1.5elf Assessment Questions:

1. Show that the characteristics of the equation

Rr+8s+Tt= f(x,y,2, p.q)
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are invariant with respect 1o any transformations of the independent
variables.

2. Show that characteristics of the second-order equation

)
,4"3_ Igﬁ LE—F{IJ’EF'ITJ
ac o

are the same as the projections on the xy plane of the Cauchy
characteristics of the first order-equation

Ap’ + 2Bpg + Cg” =0

1. In the one dimensional unsteady flow of & compressible fluid
the velocity u and the density p satisfy the equations

du du 1lap Elp ,.t'll on
_+ —_—— = + =0}
il x "x Pa

If the law connecting the pressure powith the density p is
p=kp', show that
%mg&c—--a E%+EH§+¢E='D
where ¢' =dp/dp . Prove that the characteristics are given by the
differential equations o =(u+c)dt and that on the charactenstics
u+ 2¢ are constant,

If there iz a family of straight characteristics x = my satisfying the
differential equation dx / af = w4 ¢ , prove that

yail., e==-
ek y ©

where u is a constant. Determine the equations of the other family
of charactenistics.

Eﬂ.ﬂ.ﬂducﬂm to canonical forms

e —— ———

We shall now consider equations of the type
BreSs+Tt+ fx,y,2.0.q)=0 (2.4.3.1)
which may be written in the form
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L)+ f{x,v.2, 9 =0 (2.4.3.2)
where L 15 the differential operator defined by the equation
1
p=22 152 12 (243.3)
& iy @

in which R,5,T are continuous functions of x and y possessing
continuous partial derivatives of as high an order as necessary, By
a suitable change of the independent variables, we shall show that
any equation of the type (2.4.2.2) can be reduced to one of three
canonical forms. Suppose we change the independent variables
from x, ¥ to &,17 where

'f w&lxy), g=nlxy)
and we write z(x,y) as (£, m)then it is readily shown that
equation (2.4.2.1) takes the form

A, u;»rzﬂr:. £ Fﬁ*d[ﬂﬂlﬂ=ﬂ-{.ﬂ sy (2434)
where Alu,v) = B’ +Suv+ Tv' (2.4.3.3)
B, 20y, ¥; ) = Rig, + %m,wl Fagn )4 Thm (24.3.6)

and the function F is readily derived from the piven function f .

The problem pow is to determine § and # so that equation
(2.4.3.4) iakes the simplest possible form. The procedure is simple
when the dizcriminant §° -4RT of the quadratic form (2.4.3.5) is
everywhere cither positive, negative, or zero, and we shall discuss
these three cases separately.

Case (a): §' —4RT >0, When this condition is satisfied, the
roots A, 4, of the equation

Ra* +Sa+T =0

are real and distinct, and the coefficients of ¢/ 0&
& /dn’ in eguation (2.4.3.4) will vanish if we choose £ and n
such that

x_, % &, 2%
o b el
Let us choose that

&= filx, ») n=fi{z¥y) (2.4.3.8)
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where f =¢,, f, =¢, are the solutions of the first-order ordinary
differential equations

dv 2 @ i
= + 4(x.¥)=0, . +4,(ny)=0 (2439
respectively.

MNow it is easily shown that, in general,

AL S M) -G Lann ) =(8RT-S )& n~4nf  (24.3.10)

50 that when the A's are zero

B = (8 —4RTYEn, - &)
and singe 5 -4RT >0,it follows that 5% >0 and therefore that

we may divide both sides of the equation by it. Hence if we make
the substitutions defined by the equation (2.4.3.8) and (2.4.3.9), we
find that equation (2.4.3.1) reduced to the form

(2.4.3.11)

&7
E..;E_;l? =56, ':J.'.;-'r:l

Example 1.

Reduce the equation
: -
to canonical form.

In this case R=1,5=0,T=~x", 5o that the roots of the equation
(2.4.3.7) are +r and the équations (2.4.3.9) are

Ei:ﬂi

iy
s0 that we may take |:'=}'+%II,:I?=}'—%I:.|[ i5 then readily
verified that the equation takes the canonical form

¢ __1 % %

—

afon E-m) 88
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Euth‘,b}: ST=4RT =0. In such circumstances the roots of
equation (2.4.3.7) are equal, We define the function & precisely as
in case {a) and take 5 to be any function of x, ¥ which is
independent of &.We then have, as before , A(Z,.£,)=0, and
hence , from eguation (2.4.3.10), & &, m,.1,)=0. On the other
hand , A(r, .7, )= 0 otherwise 5 would be a function of £. Putting
Alg.£,) and B equal to zero and dividing by Alr,.1m,) we see
that the canonical form of equation (1) 15 , in this case,

&
5—;,— =HE S Cnl,) (2.4.3.12)

Example 2.

In this example R =15 = 2,T =], so that it is case (b), with

l+2a+a’ =0
in place of cquation (2.4.3.7), We thus have i =-1, %0 that we
may izkes=x-), 7=x+y. We then find that the equation
reduces to the canonical form

7
an
which is readily shown 1o have solution

¢ =nhlel+ L(E)
where the function f, £, are arbirrary. Hence the original equation
has solution

r=(x+y)fi(x- ¥+ f{x-¥)
Case { c): & —4RT <0, This is formally the same as case {a)
except that now the roots of equation (2.4.3.7) are complex. If we
go through the procedure outlined in case (a), we find that the
equation (2.4.3.1) reduces to the form (2.4.3.11) but that the
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variahles £, 5 arc not real but are in fact complex conjugates. To
get a real canonical form we make the further transformation

a=s@en)  B=3(1-8)
and it 15 readily shown that
¥ _1.8¢ " azf}

afn 4 2’ B
=0 that the desired canonical form is

%+ ;'-5;1 =§Ll'{ﬂ'r||!:i‘ ';F':i ""'J---l’:-:I

(2.43.13)

2.4.3.1.5elf Assessment Questions:

|. Reduce the equation

i S SNU).
o ¥

to canomical form, and find itz general solution.

(m=1)°

2. Reduce the equation

Fr , Fz L0z
P ll}l'ﬁf&'*xﬁ'r’z

to canonical form, and hence solve it

-
Yy x i
v “rE oy

2.4.4.Separation of Variables

Many of the second order lincar equations are solvable by the
separation of the independent variables. The method is based on
the assumption that the substitution

= X(x)¥F(y) e (2.4.4.1)

reduces the partial differential equation
Rr+8Ss+Tt1+Pp+0g+Z2=F o (24.4.2)
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into an equation of the form

[%J fiDYX = [%] g(DNY - (2.4.4.3)
where f(2),#(D are quadratic functions of Dand [¥
respectively.

Since x and v are independent, such a relation is possible only
when each of the expressions equals a constant, Thus, the problem
of finding solution to equations of the form (2.4.4.1) reduces to
solving the following pair of second order linear ordinary
differential equations.

(2444

ALY = AX and g(D)Y =AY

The principle is readily extendible to more than two
independent variables.

The meihod is best illustrated by means of a [particular
example.

Consider the one-dimensional diffuzion equation

o (2.44.5)
gz 1
dc k&
If we write
z=X{x)T{t)
we find that
| 1 dT
xde kT di
30 that the pair of ordinary equations corresponding to (2.4.4.4) is
]
ﬁ =4X ,i!—T = kAT

s0 that if we are looking for a solution which tends 1w zero as
= oo,
we may take

X = AY (X, - X7 cos(mx+£),T = Be™

where we have written —n® for 4. Thus

2(x,0) = 3.C, cos(me + £, ) o (24.4.6)
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are, formally at least, solutions of equation (2.4.4.5). It should be
noted that the solutions(6) have the property that z —» 0 as r » =
and that

2(x,0) = i{.'.'_ cos{mx + £, ) e (2.4.4.T)

The principle can readily be extended to a larger number of
vanables. For example, if we wish to find solutions of the form

z=X(x)¥(»)T(r) e (2.4.4.8)
of the equation

&z Fr l&

— i e R aaa [ Id'l

a + 5 ka (2.4.4.9)

Ldix 1d¥_ 1 dT
Xd* Yd' kT d
g0 that we may take
dT e X day
—=-mkT, =f'X,—=a-m'¥
& &
provided that
M im' =

Hence we have solutions of equation (2.4.4.9) of the form

25, 3:)= Y. Gy ol € )oos(my ., )7
=il it

e (2.4.4.10)
Example: Solve
gz _l&
&' ko

Solution: If we put z = X{x)T(), we note that the given equation
is reduced to the form
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18x _ 141

x &x' kT dl
Equating them to the constantd, we thus have the subsidiary
equations as

ﬂ = H,£ = kAT

e i
Solving the above ordinary differential equations we get

X = Acos{nc +£) and T = Be™" writing 4 = —n’
Hence a suvlution of the given partial differential equation is
C, cos{nx +&, )™ where Cyand &, are constants, Since this is a
solution for all values of n, we have the general solution as

z= ivl:'_ cos(nz + £, e "
Fmil

L]
Mote z >0 as r—a and 1, =EC‘_ms(m+¢_} where z,, is the
e

value of 2 when =0,

2.4.4.1.5elf Assessment Questions:

1. By scparating the variables, show that the one-dimensional wave
equation

F:_ 18

e o ar
has solutions of the form Aexp(tine tincr), where A4 and n are
constants, Hence show that functions of the form

250 =Y 14, cos 877 + B, sin 677 ysin
- a a a

Where A s and B 's are constants, satisfy the wave eguation and
the boundary conditions z(0,0=0,2(a,0=0 for all t.

2. By separating the variables, show that the equation V[V =0 has
solutions of the form dexp{tnx+iny), where A and n are
constants. Deduce that functions of the form

Ir'f.n:',y‘,u=E.--I,:e~‘"ffz,'si|:|WTJf xz00sy=a
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where the A 's are constants, are plane harmonic functions
satisfying the conditions F(x,0)=0,F(xa)=0,F(xy)—+0 as
X — o,

Gaspard Monge (1746-1818), the inventor of descriptive
geometry, has given a method of solving a second order linear
partial differential equation of the form Rr+Ss+Ti=V

1 ¥
r=ﬁ' :-3= 8z . =E|'=3
& amy

And I, 5, T and V are functions of x, ¥, z, p and q.
Obwviously, this method is more general than the methods already
discussed in solving homogeneous and non-homogonous linear

f

equations,
First note thai

dp=rdx+sdy or r={dp-sdy¥dx
and dg=sdx+tdy or t={dg-sdx)‘dy

llence the equation Rr+8s+Tt=V reduces lo the form

(Rdpdy + Tdgdx = Vdxdy) —s

(Rdy” — Sdx dy + Tdx")=0 (2.4.5.1)
So, any relation between x, v, z, p and q which satisfies
Rdpdy + Tdgdx — Vdx dy=0 and Rdy’-Sdxdy+Tdx"=0 also satisfies
(2.4.5.13.
MNow from Repdy + Tdqdx — Vidxdy=0 (2.4.5.1)
And Ry -Sdxdy+Tdx’=0 (2.4.5.2)
Known as Monge's subsidiary equations, together wiih
dz=pdx+qdy, it is possible under certain conditions to derive one or
two relations between x, ¥, z, p and q called intermedinie inicgrals,.
These intcrmediate integrals when solved for p and q help find out
the complete integral by substituting the relevant expressions for p
and q in the equation

Dz=pdx-+qdy
and then integrating.

50, the rules may be stated as follows
Step 1. Form the equation
Rdy*-Sdxdy+Tdx’=0
and resolve il to the lincar factors as
(chy=tin dx Ml y-madx)=0 where
T

R
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Step 2. Take each of the factors dy-m;dx=0 and dy-mydx=0with

Rdpdy+Tdgdx-Vdxdy=0 and if necessary also dr=pdx+gdy to

obtain two intermediate integrals u;=f{v,) and uy=fivy) where
and are two arbitrary functions.

Step 3. If my=my either of the intermediate integrals may be

integrated and if m, # m,both the intermediate integrals are solved

for p and q and their values substituted in dz=pdx+qdy.

The integration of this last expression gives the complete integral,

The following examples illustrate the method.

Example: Solve rH{adbs+abi=xy
Solution: Comparing the given equation with Rr+5s+Tt=V
We get R=1; S=a+h; t=ab, V=xy
Hence Monge's subsidiary equations are
dy?-(a+h)dedy-+abdx =0
(i)
and  dpdy+abdpdx-xydxdy=0
(i)
Factorising (i) we get (dy-adx){dy-bdx)=0
Now dy-adx=0 gives y-ax=c
{1ii)
and dy-bdx=0 gives y-bu=c;
(iv)
From (iii) and (i) we get
dprtbdg-x(c)+a)dx-0
Or dp+bdg-x{c,+ax)dx=0

P+M—Lix' +E.t’]= constant

Or p+hq—%xi[}l—ﬂﬂ—§x’ = constant [ y-axmg,)

%o the first intermediate integral is
I k|
p+H‘E”1U-m'J'mT'Hr-m} + [ey-ax=g]
Where f; is an arbitrary function.
The second intermediate mntegral is similardy obtained as
1 By’
p+ag-2x'(y-bx)-—-= f,(y-bx)

Where f; is an arbitrary function
Solving the above two equations we get

I 1 1
p=3x'y-gla+b)x’ -——iaf(y - ax) - bfy(y - ox)]
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1 |
and q:E:’ -rmiﬁ{}'-ﬂ]-ﬂw—&ﬂ}

Putting these values in dz=pdx+qdy we get
a1 s (avh) 1
=X s exdy -
{iey — ads) £, (y - ax) - (dy - bax) £, (y - bx)}
Integrating, we get

1 I
=X’y (@+b) =+ F(y-ax) + Fyly-bo)

which is the complete integral of the given equation,

2.4.5.1.5elf Assessment Questions:

1. Solve using Monge's Methods
q (1 +qir-(prq+Zpgls+p( 1+p)=0

2. Solve using Monge's Method
(X-¥ I xr-xs=ys+ytp={x+y)(p-g)

3. Solve using Monge's Method
nc-Isxy 2ty Hpac+ 2y=x-+2y

2.5 Let us sum up

In this unit we have covered the following:

1. We introduced the concept of partial differential
equation, its occurrence and origin. Formation of partial
differential equation are also discussed.

2, We discussed integral surface and orthogonal surface

3. We explained the solution of first order non-linear
equations using Charpit’s and Jacobi's method.

4. Solution of linear second order equation with constant
co-efficient have also explained.

3. We have also explained the procedure for reduction of
second order equation to canonical form

6. Finally we have explained the solution of non-linear
second order equation using Monge's method,
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BLOCK - 3
LAPLACE'S EQUATION, WAVE EQUATION AND
DIFFUSION EQUATION

Structure

3.0.Introduction
3.1, Objective
3.2 . Occurrence of Laplace's equation
1.3, Boundary value Problems
1.4 Solution of Laplace's equation
1.5.Theory of Green's function for Laplace’s equation.
1.6. Wave exquation
3.6.1. Occurrence of Wave equation
3.6.2. Elementary Solution of one dimensional Wave equation
3.6.2.1.5¢lf Assessment Questions:
3.7.Diffusion Equation
3.7.1. Occurrence of Diffusion cquation
3.7.1.1.5elf Assessment Questions
1. 7.2, Solution of Diffusion Equation
1.7.2.1.5elf Assessment Questions
3.8.Let us sum up

3.0 Introduction

= [ = e e omm mm x i sl —— e o

In theorctical physics and engineening partial differential
cquations generally anse from mathematical formulation of the
actual physical problem

3.1. Objectives

After reading this block you will be able to

* Know, how Laplace’s equation, wave equation and
Diffusion equation appeared from real physical
problem.

» Solution of these equation by separation of variables

¢ The theory of Green's function in Laplace’s equation,

3. 2. Occurrence of Laplace's equation

We shall summarize here the main relations in some of the
branches of physics in which the field equations can be reduced to

Laplace’s equation.




58

(a) Gravitation.
(i) Both inside and outside the attracting matter the force of
attraction F can be expressed in terms of a gravitational
polential i by the equation

F= grad w
(i) In empty space y satisfies Laplace’s equation Vg =0
(iii) At any point at which the density of gravitating matter is
p the potential w satisfies Poisson’s equation Vi = —4xp
(iv) When there is matter distributed over a surface, the
potential function w  assumes different forms ¢, on
opposite sides of the surface and on the surface these two
functions satisfyv the conditions
where o is the surface density of the matter and n is the
normal to the surface pointing from the region 1 into the region
2
{¥) There can be no singularities in g except at isolated
MASSEs,

(b) Irrotational Motion of a Perfect Fluid:

(i) The velocity g of a perfect fluid in irrotational motion
can be expressed in terms of a velocity potential by
the equation
q =—grady

(ii) At all points of the fluid where there are no sources or
sinks the function y satisfies Laplace’s equation
v’ I =1

(1ii)  When the fluid is in contact with a rigid surface which
is moving so that a typical point P of it has velocity U,
then (g-U).n=0, where n is the direction of the normal at
P. The condition satisfied by y is therefore that
oy _

e (U .m)
at all points of the surface.

(iv)  If the fluid is at rest at infinity, g — 0, but if there isa
uniform velocity ¥ in the z direction, this condition is
replaced by the condition = -}z as z s ar.

(v)  The function y has no singularities except at sources or
sinks.
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e L ih Tl s b e — m——

3. 3. Boundary value Problems

T i B B m— e e Do S o BN

In this chapter we have seen that in the discussion of cenain
physical problems the function ¢ whose analytical form we are
secking must, in addition to satisfying Laplace’s equation within a
certain region of space V, also satisfy certain conditions on the
boundary S of this region. Any problem in which we are reguired
to find such a function ¢ is called a boundary value problem for
Laplace’s equation,

There are two main types of boundary value problem for
Laplace’s equation, associated with the names of Dirichlet and
Mewmann. By the imterior Dirichlet problem we mean the

following problem:
If f is & continuous function prescribed on the boundary 5

of some finite region V, determine a function g@(x,r,2) such that
Vg =0 within V end @ = fon 5.

For instance, the problem of finding the distnbution of
tempersture within a body in the steady state when cach point of its
surface is kept at a prescribed steady temperature is an interior
Dirichlet problem, while that of determining the distribution of
potential outside a body whose surface potential is prescribed in an
extertor Dirichlet problem, while surface potential is prescribed in
an exterior Dirichlel problem.

The existence of the solution of a Darichlet problem under
very general conditions can be established. Assuming the existence
of the solution of an interior Dirichlet problem, it is a simple matter
to prove its uniqueness. Suppose that v, and w, are both solutions
of the interior Dirchilets problem in question. Then the function

Ll I
must be such that V' =0within V and w =0 on 5. We know
that the values of y within V cannot exceed its maximum on S or
be less than its minimum on 5, so that we must have = 0 within
V; e, w, sy, within ¥. It should also be observed tha the
solution of a Dirchlet problem depends conmtinuously on the
boundary function.

On the other hand the solution of the exterior Dirichlet
problem is not unique unless some restriction is placed on the
behaviour of wix, y.z)as r —+ & . In the three-dimensional case it
can be proved that the solution of the exterior Dirchlet problem is
unique provided that

hv‘[.l.'.. _;I-".i!:* < %
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where C is a constant, In the two-dimensional case we require the
function  to be bounded at infinity.

In case where the region ¥V is bounded the solution of the
exterior Dirichlet problem can be deduced from that of a
corresponding interior Dirichlet problem. Within the region ¥V we
choose a spherical surface C with center O and radius a. We next
invert the space oulside the region V with respect to the sphere C;
L2, we map a point P outside V into a point I inzide the sphere C
such that

OF 0T = a’

In this way the region exterior to the surface 8 is mapped into a
region V*lying entirely within the sphere C. It can be easily shown
that if

i
(T = -2 Py
ST {Jﬂﬂ
and if y *(TT) is the solution of the interior Dirchlet problem
Vi =Doutside V., w= f(P)forPe$

3. 4. Solution of Laplace’s equation

I we 1ake the function g 1o be given by the equation
q q
e R = {3."‘.'}
P=rl Jix=x +(r-y¥ +Ga-2¥
where q is a constant and (x”. ", z) are the coordinates of a fixed
point, then since

Ia;‘w=——.I:i{.:‘:_:'ia].,I".'.l"L-.
o 1.!‘—?‘1
I LY
ﬂli::— q }-F]q{x I_'.:I .lf.f-l:'.
&= ]

it follows that
Vig =0

showing that the function (3.4.1) is a solution of Laplace’s equation
except possibly at the point (', ", 2", where it is not defined.

The function w given by equation (3.4.1) is a possible form for the
electrostatic potential corresponding to a space which, apart from
the isolated poimt (x', 3,27}, is empty of electric charge. To find
the charge at this singular point we make use of Gauss® theorem. If
S is any sphere with center (x', 3, z") then it 1s easily shown that

Y S =
fﬂnﬁ Az
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from which it follows, by Gauss® theorem, thet equation (3.4.1)
gives the solution of Laplace’s equation corresponding 1o an
electric charge +g.
By a simple superposition procedure it follows immediately that
g
W= (3.4.2)
iul P_r1|
15 the solution of Laplace’s equation comesponding to n charges qi
situated at points with position vectors r; (i=1, 2, ...,n).
In electrical problems we encounter the situation where two
charges +q and —q are situsted very close wgether, say at points r’
and r'+&' where & =(/.m.rla. The solution of Laplace's
equation corresponding to this distnbution of charpe 15
q q
= +
Y - -

MNow

1 1 Nx=x"Y+my=¥)+nlz-2"
SRS WOPC O L. bl B P e i Bt SR 1.4
F—r'— |r—r'|+ |r—r"!]' (3.4.3)
a result which may be written in other ways: If we introduce a
vector m= u(l,m,n), then

W= Lﬂ:‘}.ﬂn (3.4.4)
I~
Also since
a 1 x-x'

—— = LEIC.
ox" ||"' - F"i |r —_r']j
it follows that {3.4.3) may be written in the form
1 d d & I

= SRR | B M —_
W {W]lr A ;{ a +”a,-,f+"az']|r .
In reality we usually have o deal with continuous distributions of
charge rather than with point charges or dipoles. By analogy with
equation (3.4.2) we should therefore expect that when a continuous
distribution of charge fills a region V of space, the cormmesponding
form of the function  given as

e
where q is the Sticltjes measure of the charge at the péint r’ or if o
denotes the charge density by
pir)= (B (347
et

(3.4.5)
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By a similar argument it can be shown that the solution
corresponding to a surface § carrying an electric charge of density
0 15

(rds

IF—#7

wir)= | (34.8)

L

3. 5. Theory of Green's function for Laplace’s
equation.

We now consider of the interior Dirichlet problem.
Suppose, in the first instance, that the values of  and #w /n are
known at every point of the boundary 8 of a finite region V and
that ¥ =0 within V. We can determine by a simple
application of Green’s theorem in the form

g g
Vi = Vi )dr = [ﬂ- g o 1.5.1
r!(wwww.rz[waﬂwaﬂ (3.5.1)

where I denotes the boundary of the region Q
If we are interested in determining the solution w{r)of our
problem at a point P with position vector r, then we surround p by a
sphere C which has its center at P and has radius £ and take 3 to
be the region which i1s exterior to C and mterior to 8. Putting
l

=
end noting that
Vig' =Vig =0

within ) we see that

J{“"‘?s‘-: lr']-rI_Lr']-r%}dSI+

o2 les-o
mi—A F-rlon

where the normal n are in the directions. Now, on the surface of the
sphere (.

(3.5.2)

11 & 1 _1
[F=r &' anlp'-r &
dS' = & sin G Gdg

and

. dw . O Sy
X + £+ 5t 8 cos ¢ —— + sin @ sing —— + cos f ——
wir’) =wir) r{ @ B in g & o
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v _(2w
(%), roe
so that fwu:f}amﬂ' = dmp(r) + O(s)

and jlr_a"" = (e)

Substituting these resulis into equation (3.5.2) and letting £ tend to
zzro, we find that

1 dwlr)y & 1 ‘
wir) = I{F o g w(r') g ﬂ}as (3.5.3)

so that the value of ¥ at an interior point of the region V can be
determined in terms of the values of  and dw /&1 on the
boundary 5.

The solution of the Dinchlet problem 15 thus reduced to the
determination of the Green's function Gir,r’).

3. 6. Wave equation =

In this chapter we shall consider the wave cquation

which is a typical hyperbolic equation. This equation is sometimes
writien in the form
V=0
where V' denotes the operator
a 2 22 18
PR R R
If we assume a solution of the wave equation of the form

w =¥z, y,z )"
then the function g must satisfy the equation

@ +8 ) =0
which is called the space form of the wave equation or Helmholtz's
equation.
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3.6.1. Occurrence of Wave equation
We shall begrin this chapter by listing several kinds of situations in
physics which can be discussed by means of the theory of the wave
equation.
(a) Transverse Vibrations of a String: If a string of uniform linear
density pis sireiched 1o a uniform tension T, and if, in the
equilibrium position, the string coincides with the x axis, then
when the string is disturbed slightly from its equilibrium position,
the transverse displacement ¥(x.t) satisfies the one-dimensional
WAVE eguation

@y 1@y

B o By {3.6.1.1)
where ¢ =T/ p. At any point x=a of the string which is fixed
viaty=0 for all values of t.
(b) Longitudinal Vibrations in a Bar, If a uniform bar of elastic
material ¢ross section whose axis coincides with Ox is stressed in
such a way that each point of a typical cross section of the bar takes
the same displacement £(x.r)then

gF 12§

&:,]' l.-':. -[.-""I'I
where ¢* = E/ p. E being the Young's modulus and p the density
of the matenal of the bar. The stress at any point in the bar 15
g
=k (3.6.1.3)
For instance, suppose that the velocity of the end x=0 of the bar
0 = x < @is prescrbed o be v(t), say, and that the other end x=a is
free from stress. Suppose further that at that time t=0 the bar is at
rest. Then the longitudinal displacement of sections of the bar are
determined by the partial differential equation (3.6.1.2) and the
boundary and initial conditions.

(3.6.1.2)

ir

M Z=vl) for x=0
{11) %:U‘ for x=a

{111) .;:%fuﬂ at +t=0 for O<sx<a

() Longitudinal Sound Waves. If plan waves of sound are being
propagated in a hom whose cross section for the section with
abscissa x in A(X) in such a way that every point of that section has
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the same longitudinal displacement £(x.r). then £ satisfies the
partial differential equation

af18, 4 1%
E{]E[‘” ]]_ -1 (3.6.1.4)

which reduces to the one-dimensional wave equation (3.6.1.2) in
the case in which the cross section is uniform. In equation (3.6.1.4)

, {dp
= —— 1.6.1.5
i [iﬂ]. Ghateel

where the suffix 0 denotes that we take the value of dp/dgp in the
equilibrium state. The change in pressure in the gas from the
equilibrdum value p, is given by the formula

- py ==¢ uﬁ 3.6.1.6
P-P Pas ( )

where g, is the density of the gas in the equilibrium state. For
instance, if we are considering the motion of the gas when a sound
wave passes along a tube which is free at cach of the ends x=0, x=a
then we must determine solutions of equation (4} which are such
that

%:ﬂ at x=0 and at x=a

{d) Electric Signals in Cables. We have already remarked that if the
resistance per unit length R, and the leakage parameter G are both
zero, the voltage V (x, t) and the current z (x, 1) both satisfy the
one-dimensional wave equation, with wave velocity ¢ defined by
the equation
e B 3.6.1.7
i ( )

where L is the inductance and C the capacity per unit length.

3. 6.2. Elementary Solution of one dimensional Wave
equation
General solution of the wave equation

a 18y
EEi" = (3.6.2.1)

is

y=f{x-+ety+g{x-ct) (3.6.2.2)
where the functions [ and g are arbitrary, In this section we hall
show how this solution may be used 1o describe the motion of a
string.
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In the first instance we shall assume that the string is of infinite
extent and that at time t=0 the displacement and the velocity of the
string are both prescribed so that
szl %ﬂm at £=0 (3.62.3)
Owur problem then is to solve equation (3.6.2.1) subject to the initial
conditions (3.6.2.3). Substituting from (3.6.2.3) into (3.6.2.2) we
ohtain the relations
nix)=fl=)+gle)  vix)=of(x)-eg'(x) (3.6.2.4)
Integrating the second of these relations, we have
'I £
Jle)-gle)=— [z )az
[}
where b 15 arbitrary. From this equation and the first of the
equations (3.6.2.4) we obtain the formulas

1ix)=37)

E

[ )ds

l
o amma
E‘:I'-

I e
E[!}l=§f?{f}-ﬂ;‘{§ |EL

Substituting these expressions in equation (3.6.2.2), we obtain the
solution

el .
y=glnlererenls ‘:!H-'-Ec"[:{'; )t (3.6.2.5)

The solution (3.6.2.5) is known as d' Alembert’s solution of the
one dimensional wave equation. If the string is released from rest,
v= 0 so that equation (3.6.2.3) becomes

- % P TR S (3.6.2.6)
showing that the subsequent displacement of the string is produced
by two pulses of “shape”™ y =%q{:} each moving with velocity ¢,
one to the right and the other to the left. In such motion the initial
displacement is

0 x<-ag
plx)=11 |d<a
0 x»>a

The motion may be represented by a series of graphs cormesponding
to various values of 1.

We shall now consider the motion of a semi infinite string x =0
fixed at the point x=0. The conditions (3.6.2.3 are now replaced by
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y=nx) %=1¢{:] =0 at =0 (3.62.7a)

y=0, E='IZI' tz0 at x=0 (3.6.2.70)

of
The solution (3.6.25) iz no longer applicable, since
m(x - cf) would not have a meaning if ¢ > x/c. Suppose, however,

we consider an infinite string subject to the imtial conditions
_.,I:]"{j_'l %:F{f} at r=0

glx} if xz20
where ﬂx]n[-qf—x} if x<0

X if xz0
and Vix)= L :{{-]xj i i <0
Then its displacement is given by

£+IF

1 | .
y= E{l’ (x+er)+ Y (x—er)l+ E,_-I:,v{; Ja¢ (3.6.2.8)
50 that when x=0

y =’E{r {ﬂ]”[_m]}a,i!v{; JiE (3.6.29)

wod 2= el ) -1 el 3 ()b (e
a2 .
It is obvious from the definitions of Y and V that both these
functions are identically zero for all values of t and that therefore
the function (3.6.2.9) satisfies the condition (3.6.2.7b) as well az
the differential equation (3.6.2.1). It is casily verified that it also
satisfies the condition (3.6.2.7a). In particular, if the siring is
released from rest so that v, and consequently V, is identically zero,
we find that the appropriate solution is

%[q{_‘r+fl‘]+!3{.‘l’—fl‘}] x2cl
%[r]l{x+ﬂ;|-q{ﬂ—x}] xsct
It may be obtained directly from the analytical form of the solution

or, more ¢asily, from the graphical solution for an infinite string
subject to an initial displacement Y{x).
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A similar procedure is applicable in the case of a finite string of
length | occupying the space 0<x =/, The initial conditions may
then be written in the form

y=nx) %:.{:} 0sxs! at.r=0

y=10, %:ﬂ rz0 st x=0 and x=1
and by a method similar to the one abowve it 15 readily shown thal
the solution of the wae equation (3.6.2.1) satisfying these
conditions 15 the expression (3.6.2.8), where now the function Y(x)
is defined by the relations

if 0=x=/
¥(x)= 7 (x) if 0sx
-pl-x) if -Isx<0

It is well known from the theory of Fourier series that such an odd
periodic function has a Fourier sine expansion of the form

Fle)= 3o sin ™1 (3.6.2.10)
L]
where the coefficients »_ are given by the formula
7 {u{e.']m[“f (3:62.11)
Similarly
vix)=¥v. gm[$] (3.62.12)
i
where v, % vl )m["“; f]d.: (3.6.2.13)
L}
Substituting the results

i i
iI-{r: ) =ﬁ§%—m[”’: ”]m{‘“’: ”]

which follow from these expansions, into the solution (3.6.2.8) we
find that the solution of the present problem is

7 Sronl = ol 25 SR () =)

-~ (3.6.2.14)

%{r (x+2)+ ¥ (r—ct) = gq_ :in[ﬂ*# .'I:] M]
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Where 5, and v_ are defined by equations (3.6.2.11) and
(3.6.2.13) respectively.

Example. The points of trisection of a string are pulled aside
through a distance £ on opposite sides of the position of
equilibrium and the stnng 15 released from rest. Denve an
expression for the displacement of the string is released from rest.
Show that the mid-point of the string always remains at rest.

In this case we may take 1-3a and

i
?I{I}'l {3::'—21'] asx<a
:[E—}i' 2asxslia

[F)

and w(x) = 0. Thus the Fourier coefficnets are
e “E{I m:r;ﬁ_i_ﬁh 3 }_“.nn: r¢+?i,_3,}ﬂ_.’3.'_{.|. }

h:

t’mi l:f'ﬁsini-]mnj
and v, =0
mihﬂﬂtdisplnm:miighmhyrhcﬂpﬂﬁiun
=1- E—l]" . mxx _ mrc
L ~ m 3 sm 3a e 3a

which 15 :quiﬁ'.ulmt o

£ 2ag , Inmax  2mmwct
}F“-I-rrt Z I-sln' --Ililnd' FEp=s S ms_ e —

msl B Ja Ja
The dﬂp-lmmm of the mrﬂ-pm'nt of the string is obtained by
putting x=3a/2 in this expression. Since sin(2eoc/ 3a)would then
equal sinmr and this is zero for all integral values of n, we see that
the displacement of the mid-point of the string is always zero.

3.6.2.1.5elf Assessment Questions:

1. ]fuwwingismlmedﬁmnrﬁtinﬂupmlﬁm
J-"— - x)
ahuwﬂ'untﬁ motion is described by the equation
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Jza-i - N @a+l)rx_ {:nuhcr

¥ 28 =(2n+1) J

3.7. Diffusion Equation

In this chnpl:l:r we shall consider the typical parabolic equation
fa" ¢ _ae

dre
and its peneralizations o two and three dimensions, Because of its
occurrence in the analysis of diffusion phenomena we shall refer to
this equation as the one-dimensional diffusion equation and 1o its
generalization
aa

Vg = —
o

a5 the diffusion equation,

3.7.1. Occurrence of Diffusion equation

Here wi will discoss the occurrence of diffusion equations in
thecretical physics,
(a) The Conduction of Heat in Solids. If we denote by & the
temperature al a point in a homogeneous isotropic solid, then it is
readily shown that the rate of flow of heat per unit area across any
point plane is

PR G.7.1.1)

i

where k is the thermal conductivity of the solid and the operator
&/ v denotes differentiation along the normal. Considering the
flow of heat through a small element of volume, we show that the
variation of # is governed by the equation

o r.-%? = divik grad@ )+ H(r. 8 .1) (3.7.1.2)

where pis the density and c the specific heat of the solid and
Hir,8.0dr is the amount of heat generated per unit time in the
element o situated at the point with position vector r.

The heat function Hir,#,imay anse because the solid is
undergoing radioactive decay or is absorbing radiation. A term of
this kind exists also when there is generation or absorption of heat

in the solid as a result of a chemical reaction, e.g., the hydration of
cement.

If the conductivity k is & constant throughout the body and if we

write
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[y '-H—E' E{rrﬂ _;}:M

L

pc oe
equation (3.7.1.2) reduces to the form
E—;! =k Vi +Ar.8 1) (3.7.1.3)

The fundamental problem of the mathematical theory of the
conduction of heat is the solution of equation (3.7.1.2) when it is
known that the boundary surfaces of he solid are treated in a
prescribed manner. The boundary conditions are usually of three
main types:

(i) The wemperature is prescribed all over the boundary;
Le., the temperatures &(r.4)is a prescribed function of |
for every point r of the boundary surface.

(i)  The flux of heat across the boundary is prescribed; ie.,
&8 { &w 1s prescribed;

(iti) There is radiation from the surface into a8 medium of
fixed temperature &, ; i.c.,

o
Eﬁrﬂﬂ—ﬂu]ﬂ (3.7.1.4)

where h is a constant.
If we introduce the differential operator

A=C‘.+E,§+E,%+E,§; (3.7.1.5)
where Cyg, C), Cs, C, are functions of x, ¥, z only, we see that the

boundary condition

Adlrt)=Glrt) res (3.7.1.6)
embraces all three cases.

(b) The slowing down of Meutrons in Matter. Under certain
circumstances the one dimensional transport equations goveming

the slowing down of neutrons in matter can be reduced to the form

& _&x
T|z,@ 3711,

where & is the “symbolic age” and »(z,&)is the number of
neutrons per unit time which reach the age @ 1.e., » 15 the slowing
down density. The function T i3 related to S{z,u) the number of
neutrons being produced per unit tme and per unit volume, by the
relation

T(z.8)=4x s[z,u]$ (3.7.1.8)

where u=log(Eo/E) 15 a dimenstonless parameter expressing the
encrgy E of he neutron in terms of a standard energy Ej.
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{c) The diffusion of Vorticity. In the case of a viscous fluid of
density o and coefficient of viscosity ¢ which is staried inio
motion from rest the vorticity £ which is related to the velecity q in

the fluid by the equation
&=curl g (3.7.1.9)
is governed by the diffusion equation
% .y (3.7.1.10)

where v = u/ o is the kinematic viscosity.

3.7.1.1.5elf Assessment Questions:

1. Supposc that the diffusion is linear with boundary
conditions c=c; at x=0, ¢=¢; at x=| and that the diffusion
coefficient D is given by a formula of the type
D=Di[1+fic)], where Dy is a constant. Show that if the
concentration distribution for the steady stale has been
measured, the function fic) can be determined by means of
the relation

1[c+Fic) - - Fie)) ] =x [e2 + Flez) - ¢ - Fle)]

where Flc)= [fu)du

Show further that if' s is the quantity of solute passing per
unit area during lime 1, then

sl
O = e Fl)-e, - Fle,)

3.7.2. Solution of Diffusion Equation

In this section we shall consider elementary solutions of the one-
alg 128
——-— 3.7.2.1
i 5 K o ( !
We begin by considering the expression

1 xt
B A 1.7.2
g ,ﬁ“"[ m] B3722)
For this function it is readily seen that

i
' . X =iy 1 -7 i

&' gt h 2 11




73

2
ﬁ'ﬂ b E-JJ ar 1 ~rf i

—_— —_
4yt 247

showing that the function (3.7.2.2) is a solution of the equation
(3.7.2.1).
It follows immediately that

_ I “la-f Fida

e € (3.7.2.3)
where £ is an arbitrary real constant, is also a solution.
Furthermore, if the function ¢{x)is bounded for all real values of
¥, then it is possible that the integral

. 2,}'}1'}‘7 Tote }ﬂp{_ %}d{ (3.7.2.4)

15 also, in some sense, a solution of the equation (3.7.2.1).

It may readily be proved that the integral (3.7.2.4) is convergent if
t>0 and that the integrals obtained form it by differentiating under
the integral sign with respect to x and t are uniformly convergent in
the neighborhood of the point (x.t). The function &{x,f)and its
derivatives of all orders therefore exit for t=0 and since the
integrand satisfies the one dimensional diffusion equation. it
follows that &x,i) itself satisfies that equation for =0

Now

1 .:iﬂlir:}mn[—&‘*rf}d:—i{x*

Arwwt) = o

'=|f| + 1 41+ ;,,I
where,
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If the function $#(x) is bounded, we can make each of the integrals
I3, I3, Iy as small as we please by taking N to be sufficiently large
and by the continuity of the function ¢ we can make the integral I,
as small as we please by taking t sufficiently small. Thus as
= 0,8(x, .r} =5 ¢(x). Thus the Poisson integral

h—:F}
@) s ——— |¢(E)expl -——d¥ (3.7.2.5)
{rt 2 mcr ! ol
is the solution of the initial value problem
a'g 1 a8
¥=;E -0 XD (3.7.2.8)
&x,0) = p(x)

It will be observed that by a simple change of variable we can
express the solution (3.7.2.5) in the form

@ (x.1)= % [# e+ 20wt e d (3.127)

We shall now show how this solution may be modified to obtain
the solution of the boundary value problem

a'd _1a8

a s IEF X

K0 = flx) x>0 G738

0, =0 >0
If we write

#x) for x>0
#[I}n{-_.ﬁ[—x] for x<0
then the Poisson integral (4) assumes the form

O amt Praer _ golog Fraes |y 3.7259
E"[r,!} ﬁ!f{'f}{e . ] ] ( ;

and it is readily verified that this is the solution of the boundary
value problem (3.7.2.8). We may express the solution (3.7.2.9) in
the form

E{x:}—— ]',r{:+2u,'|"_]l*du

Jl’.!-.u..'

—— j_,l"{ I#qul'_]e

:r I,ll'_
Thus if the initial temperature is a constant, &, say then

(3.72.10)
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A (x,)= 8 erf {1 ;,;__r (3.7.2.11)
where
- :f..'jfe-"' (3.72.12)
e
The function
f(x.0)= E,,Il —erf {ﬁH (3.7.2.13)

will therefore have the property that &{x,0) = 0. Furthermaore
@#x,0) = #,. Thus the function

8 (x.0.0%) = gle' {1 ~erf {T_“H

is the function which satisfies the one dimensional diffusion
cquation and the conditions &(x.0,0")—0,8(0,0.0"=gi(r"). By
applying Duhamel's theorem it follows that the solution of the
boundary value problem

Nx, =0, 0= glr) (3.7.2.14)

& (x.r)= J—E;g I,g{:’}:ir‘ T[e"’du

i Ha-#R

-: e fi=i'd

ol }—dr
zfl v
Changing the variable ﬂl‘ml:egrntmn from 1 to u where

I
X
P'sf=

dx u’
we see that the solution may be written in the form

i

X

: 1
qxuz]e"du. 1== (7219)
W

3.7.2.1.Self Assessment Questions:

1. The surface x=0 of the semi-infinite solid x=0 is kept at
temperature &, during 0<1<T and is maintained a1 zero temperature
for t>T. Show that if =T
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8 (x.0)=8,{erf ———x —erf L}

2/ (r=T) 2 it

and determine the value of & 1f 1=T.

3.8 Let us sum up:

We have discussed the following in this block.

. We have given examples from physics how Laplace’s
equation, Wave equation and Diffusion equation are
occurred from actual physical problem.

2. We have also dizcussed the solution of these equations
by the method of separation of vanables.
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BLOCK 4
VOLTERRA INTEGRAL EQUATION

e L L L v e e ee———

Structure

4.0 Introduction
4.1 Objectives
4.2 Basic concepts
4.2.1. Self Assessment Questions
4.3 Relation between differential equation and integral equation
4.4 Yolterra Integral Equations
4.4.1 Resolvent Kernel of Volterra Integral equation
4.4.1.1. Self Assessment Questions
4.4.1.2. Self Assessment (Questions
4.4.2 Solution of Integral Equation by Resolvent kemnel
4.4.2.1. Self Assessment Questions
4.4.2.2, Self Assessment Questions
4.4.3 The method of successive opproxmations
4.4.3.1. Self Assessment Questions
4.4 4 Convolution-type equations
4.4.4.1. Self Assessment (Questions
4.4.4.2, Selfl Assessment Questions
4.4.5 Volterra Integral Equations in the limits {x =)
4.4.5.1, Self Assessment Questions
4.4.6 Volterra equation of the first kind
4.4.6.1. Self Assessment Questions
4.4.7 Euler integrals
4.4.7.1. Self Assessment Questions
4.5 Able's Problem, Able's integral equation and its generalisation
4.5.1. Self Assessment Questions
4.6 Volterra Equation of the first kind of the convolution type
4.6.1. Self Assessment Questions
4,6.2. Self Assessment Questions
4.6.3. Sclf Assessment Questions
4,7 Let us sum up

4.0 Introduction

The theory of intcgral equation is one of the most important
branches of mathematics, particularly on its imporiance in
boundary wvalue problems in ordinary and partial differential
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equations. Integral equations occurred in the field of mechanics and
mathematical physics, like mechanical vibration, theory of analytic
functions, orthogonal system, Quadratic forms of many variables
etc. Integral equation also occur in the problems of science and
technology like radiation transfer problem, neutron diffusion

problem etc. A differential equation can be replaced by an

integral equation with the help of initial and boundary
conditions. As such, each solution of the integral equation
automatically satisfies the boundary conditions.

4.1 Objectives

After reading this block, you will be able to :

* undersiand the concept of integral equation

e find the relation between a differential equation and in
integral equation

* Know the concept of Volterra equation by successive
approximations.

+ Know the convolution type equation
Volterra equation in the line (x, )
Euler integral, Abel’s problem and Abel's integral
equation and its generalisation

¢ Volterra equation of first kind of the convolution type

4.2. Basic Concepts

The equation

p ()= £x)+ 4 [K(x.0)p (O 421

Where fix), K(x, t) are known functions, ¢fx) is the unknown
function and | is a numerical parameter, is called Volterra's linear
integral equation of the second kind. The function K(x, t) is the

kernel of Volterra’s equation. If f{x) =, then equation (4.2.1) takes
the form

¢ (x)= 4 [K(x.0)p ()t ... (4.22)
d
and is called a homogeneous Volterra equation of the second kind.

The equation
A [K(x, ) ()t = £(x) e (42.3)
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where ¢ (x) is the unknown function is called Volierra's integral
equation of the first kind. Without loss of penerality, we can
consider the lower limit o as equal to zero {in the sequel we shall
assume this 10 be the case).

A solution of the integral equation (4.2.1), (4.2.2) or (4.2.3) is a
function ¢ (%), which, when substituted into the equation, reduces it

to an identity (with respect tu x).

Example Show that the function ¢ (x) = is a solution of

the Volterra integral equatium

|
|LI+.1.'1]|'};

FH———— 1__.,.[;},;; (4.2.4)
H + X

Solution: Substituting the function ﬁ in place of @ {x) into
l+x

the right member of (4), we abtain

‘!— 1 1 __|___[__ 1
0I+J.' 1}’“": I+x’ 1+x? |:|+rrJH

-—-——-—-- - l.u__

1+x* {1+x F’z 1+x°

1
= =P
{1 s :’}}g
Thus, the substitution of @ (x) = —lu into both sides of

{1+Jr

equation (4.2.4) reduces the equation to an identity with respect to
x:

1 e 1
{|+.1.'1]|}9 {1+:1}|}4

According to the definition, this means that @ fx) = — :
1+x°

ma

solution of the integral equation (4.2.4).

4.2.1. Self Assessment Questions:

Verify that the given functions are solutions of the corresponding
integral equations
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I-P{:]= |I|+J.'11,|};;

L] a1 ]_
[:}- 3x+2x Ix+2x —& [x].n'r

‘3{1+;=r‘,f iex) |

2. ¢lx)= s'{mﬁa’ —B’Eiua"]

3. @ (x)=1- 5e™ Joosl - & sinl + ][i-[:-:]e";u{.r}d!

4. plx)= x—':T],' olx)=x- ]'sim[:-:}p{r}:ﬂ

5 @(x)=1-x :FE""-FI (e)ar=x

L

MNote. Volterra-type integral equations occur in problems of physics
in which the independent variable varies in a preferential direction
(for example, time, energy, etc.),

Consider & beam of X-rays traversing a substance in the direction
of the x-axis. We will assume that the beam maintains that
direction when scattered. Consider a collection of rays of specified
wavelength, When passing through a thickness dx, some of the rays
are absorbed;, others undergo a change in wavelength due to
scattering. On the other hand, the collection is augmented by those
rays which, though orginally of greater energy (ie., shorier
wavelength L), lose part of their energy through scattering. Thus, if
the function A, xidd gives the collection of rays whose
wavelength lies in the interval from A to 4 + 44, then

%’j"{! == f{d,z)+ :ff'{-'hrl-""[ﬁx}l"

where g is the absorption coefficient and Prd, ridr is the
probability that in passing through a layer of unit thickness a ray of
wavelength racquires a wavelength which lies within the interval
between Ato A + &1,
What we have is an infegro -differential equation, i.e., an equation
in which the unknown function /{1, x) is under the sign of the
derivative and the integral.
Putting
Al x)= Je™w (2, pldp

B
Where g (4, p) i3 a new unknown function, we find that (4, p)
will satisfy the Volterra integral equation of the second kind
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w[l,r]'=r:,}°{i.rh{r-phf

e m o mE mm o n e e ——

4.3. Relationship Between Linear Differential
Equations and Volterra Integral Equations

The solution of the liner difTerential equation
A a=1
E+n,{:]i—;_—'r+...+u,{:]y-F{1'} e (A0
with continuous coefficientz a ) (7 = 1, 2, ..., nh given the initial
conditions _
WO) = Co, y 00 = Cpp oot ¥ ) = Cay . (4.3.2)

may be reduced to a solution of some Volterra integral eguation of
the second kind.
Let us demonstrate this in the case of a differential eguation of the

second order
%+a,{x}%+a: (x)y = Flx) (43
) =Co ¥ = L {4.3.2)
Put %?:@;;]. o (43.3)

Whence, taking into account the initial conditions (4.3.2° ), we
successively find

%-]ﬂr}ﬂ'ﬂ-ﬂ',. y= rj{#*-’}ﬁl:f]fﬂ+f,.:+i:'u ..... (4.3.4)
Hnt,:-.-utﬂlizadllu [nnn:lla

]dr ]dr ]f[:}& = [n+!] ]{x — )" F2)de

B Ty 2

Taking into account (4.3.3) and (4.3.4), differential equation (4.3.1)
may be wntten as follows:

ols)+ falelolibi (e} o s~ ehollir+ o) o)« F
or p(x)+ [lay(x)+ ay )z - o o
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= Flx)=C,a,(x)= C xa,(x)= Ca,(x) . (43.5)
Putting

Kix 1) = = fax) + apx)ix-1)] e (4.3.6)

fix) = Fix) = Crayix) — Cprasix) — Caapix) e (3.3.7)

We reduce (4.3.5) to the form
wlx)= [Kxehpliddr + fix)
&

(4.3.8)
which means that we armive at a Volterma integral equation of the
second kind.

The existence of a umique solution of equation (4.3.8) follows from
the existence and uniqueness of solution of the Cauchy problem
(4.3.1 — (4.3.2') for a linear differential equation with continuous
coefficients in the neighbourhood of the point x = 0,

Conversely, solving the integral equation (4.3.8) with K and f
determined form (4.3.6) and (4.3.7), and substituting the expression
obtained for ¢ (%) into the second equation of (4.3.4), we get a
umigue solution to eguation (4.31) which safisfies the initial
condition (4.3.2' ).

Example. Form an integral equation corresponding o the
differential equation

yieglry=0 . AN
and the initial conditions
yl = Lyim=-0 L (2)
Solution:
d’y
Put Fr) =g {J] ...... i(3)
Then

L= @+ y 0)= fo (i, y= Jir-dp @+t ..o @)
Substituting (3) and {4) into the given differential equation, we get
o (x)+ [xgli)er+ [(x-)p ()t + 120

ar

p (x)=-1- [(2x- 1) (1)

4.4, \Fnlurra'fnlgral Equations
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4.4.1. Resolvent kernel of Volterra Integral Equation.

Suppose we have a Vollerma integral equation of the second kind
plz)=fx)+ A :Iﬁ{.r..-];a{r}ar.- (4.4.1.1)
a

Where K{x, 1) is a continuous function for 0 = x<a, 05t 5 x, and
fix) is continuous for 0 < x < a,

We shall seek the solution of integral equation (4.4.1.1) in the form
of an infinite power of series L.

elx)=p (x)+ip (x)+i'p [x)+. . .+ 1% (x)+... (44.1.2)

Formally substituting this series into (4.4.1.1), we obtain
e lx)+ 2 )+ 2% (x)+ .+ 20 (x)+ ...

= f(x)+ 1 ]'K[x.riqﬁ .{:] + A p ,I:.r:H et d e (x)+. Iu'r (44.1.3)

Comparing coefficients of like powers of &, we find
P olx) = fix),

@, [x)= }H{I,I};:r L) ot = }h{x,r]lﬂ:}qr:, (4.4.1.4)

0 )= [Klxtkp ) dr = [K () [K(r, b, )

The relations (4.4.14) yield a method for a successive
determination of the functions ¢,(x).It may be shown thal under the
assumpiions made, with respect to fix) and K(x.t), the serec
(4.4.1.2) thus obtained converges uniformly in x and A for any 2
and x e [0, a] and its sum is a unique solution of equation (4.4.1.1).
Further, it follows from (4) that

@ (x)= }K (x.)F (el e (d.4.1.5)
it :jxtx,r{;[ut:,r.mr. m.]w

}ﬁ’l :"#1 }R[-"-':.{'E'-"lj'ﬂ i .J‘H-z f'r!"l.]-lr{.'rl]drl ~oe44.1.6)
Where . : :
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K.l )= ]ﬁ{x,:p:{:,:,}dr ______ (4.4.1.7)
fy
Similarly, it 15 established that, generally,
(2= [K (eo)fl)dr (n=1,2.00 L.
B

i4.4.1.8)
The functions K, (x, t) are called iterated kemnels. It can readily be
shown that they are determined with the aid of the recursion
formulas
K(x. 1) = Kix, 1),

Km[:.f} - }-K{I.E}B‘l Azt)dz (n=1,2,..)  ..(44.19

Utilizing (4.4.1 8) and (4.4.1.9), equality (4.4.1.2) may be written
as

plx)=flx)+ ¥ 4 P]K,{:_:]f{r}d; o (4.4.0.10)
The function R(x, 1; 1) defined by means of the series
Rl i)=% 4K, (x1] . (44.1.11)

is called the resolvent kemel (or reciprocal kemel) for the integral
equation (4.4.1.1). Series (4.4.1.11) converges absolutely and
uniformly in the case of a continuous kemel Kix, 1).

iterated kemnels and also the resolvent kemel do not depend on the
lovwer limit in an integral equation.

The resolvent kemel Rix, t; L) satisfies the following functional
equation.

Rlx,ed ) Kix)+ 4 iﬁ{:,:}ﬂl{s,f;i Jels .. (4.4.1.12)

With the aid of the resolvent kernel, the solution of integral
equation (4.4.1.1) may be written in the form

p )= £x)+ 2 [ Rls. ) 1) L (A113)

Example: Find the resolvent kernel of the Violterra integral
equation with kernel K(x, )= 1.

Solution: We have K (x, 1) = Ki{x, t} = 1. Further, by formulas
(4.4.1.9)

K, lxe)= jﬁh.zk,{r,rlﬁ = }:ﬁ =x—1,
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. i) PO
€)= fix, e = b0 G

Thus, by eh definition of the resolvent kemel,

Bx64)= 352 Ko rt) = 52 e

4.4.1.1. Self Assessment Questions:

Find the resolvent kemnels for Volterra-type integral equations with
the following kernels:

1. K{x,l=x—1t
2. Kix,t)=¢&"""
1 j{[x,l'] e

4 Kix I}_1+I

5. Kix, |]|'a"" fa=0

Suppose that the kemnel K(x, t) is a polynomial of degreen— 1 int
so that it may be represented in the form

K(x,0) = ay (x)+ a, (x)x - )+ .. +H[x 7 (4.4.1.14)

and the coefficients ay(x) are continuous in [0, a]. If the function
gix, t; L) is defined as a solution of the differential equation

lI:Irlll a-l A=2
£ [a.[;}:iﬂ-r_f +a,{x]‘:&Tf+ ok a*,{;lg] -0 (44.1.15)

satisfving the condition

L L A=l
_t%j-‘ =0 14__'?{ =1 (4.4.1.16)
Fud rm

then the resolvent kernel Rix, t; &) will be defined by the equality
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Rix,i:d )= %% (#.4.1.17)
and similarly when
K t) = b, (c)+ b, (e Me -x}+.,-+;:"—l{:%[r—x}“' (4.4.1.18)

the resolvent kernel

1 d"glxr:d)

A f=————— d.
Rix,d ) == (4.4.1.19)
where gix. t; A) is a solution of the equation

A w=l
‘:uf + [&uir}‘:rTf+..,+h__,ﬁ]g} =0 (4.4.1.20)

which satisfies the conditions (16}
Example: Find the resolvent kernel for the integral equation

ple)= fle)s flx—rhp ()

Solution: Here, K(x, t) = x - t; L = 1; hence, by (14), 8;(x) = 1, and

all the other ag(x) = 0.

In this case, equation (13) has the form
F I

i%-—?I—I’}n gl{.t_.:;l} = ()

whence

Blx, & 1) = g(x, () = Cy(the” + Cylthe™

conditions (16) ?'ir:]d

Cotye' + Ca()e" =0

Cy(the’ = Calt)e™ = 1(4.4.1.21)

Solving the system (21), we find

1 . 1,
C,f)= 3¢ C,lr)= -
and, consequently,
E{#J}= %l{#"r _ E-‘lx-ul]__’ ﬂl‘ll'l[.:l: _:}

According to (17)
Rlx,5;1) = [sinh(x 1)]; = sinh(x )

B g e e e

4.4.1.2. Self Assessment Questions:

Find the resolvent kemels of integral equations with the following
kemels (&= 1)

. Kix, t)=2-(x-1t)

2. Kix,h)==2+3(x-1)
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I Kix, t)=2x

_ d4x=2 B[x-1)
bR

4.4.2. Solution of Integral Equation by Resolvent
Kermel

— = e e v s

Suppose we have o Volterra-type integral equation, the kernel of
which is dependent solely on the dilference of the arguments:

o ()= rlx)+ [Kix-tp ()t (2=1) @4.2.1)

Show that for equation (4.4.2.1) all ierated kemels and the
resolvent kemnel are also dependent solely on the difference x - L.

Let the functions f{x) and Ki(x) in (3.4.2.1) be original functions.
Taking the Laplace transform of both sides of (4.4.2.1) and
employing the- product theorem (transform of a convolution), we

aet
®{(p) = Flp)+ R(p}v(p)
where
@ (x) = Pip),
fix) = Fip)
K(x)=K(p)
Whence {pj
=i-—, E(ph21 4.4.2.2)
)=y KO (44.22)

Taking advantage of the results of Problem 30, we can write the
solution of the integral equation (4.4.2.1) in the form

olx)= rlx)+ i{ﬂ{: =) (e el (4.4.2.3)

where Rix-t) is the resolvent kemnel for the integral equation
(4.4.2.1)
Taking the Laplace transform of both sides of equation (4.4.2.3),

we obtain
@(p)= F(p)+ E(p)F(p)
where
R(x)=R(p)
Whence
R(p)= ®(p)- Fip) (4.4.2.4)

~ Fle)
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Substituting into (4.4,2.4) the expression for F(p) from (4.4.2.2),

wie ohtain

R(p)= &) (4.4.2.5)

The original function of £{p) will be the resolvent kemnel of
the integral equation (4.4.2.1)

Exampie: Find the resolvent kernel for a volterra imtegral equation
with kernel K(x, t) = sin (x, t}, =1

Sﬂl.lth‘l. “‘I‘E I'lﬂ'l': K.[:F']_ m b:r f'd .‘.er}

eae RN
-2t L,
- P

H
g+l
Hence, the required resolvent keme! for the integral equation is
Rix.t; 1)=x -t

Self Assessment Questions:

=

Find the resolvent kernels for Volterra — tvpe integral equations
with the kernels (A = 1):
. Ki{x,t)=szinh (x - 1)
R[x l-} e =ix =}
Kix, t)=e "™ Tgjn(x < 1)
Kix, 1} = cosh (x -
Kix.t)=2cos(x—t)

e

Example: With the aid of the resolvent kemel, find the solution of
the integral equation

elr)=e" + ]-a"l"lg:l (e )ate

Solution: The resolvent kerned of the kernel K(x,1)=¢"" for A=
lis B{x,rl)=e""e" ™, By formula (4.4.1.13), the solution of the
given integral uqllalh:m is

pl)=e” s+ feme’ e’ p (e = e

4.4.2.1, Self Assessment Questions:




&9

Using the results of the preceding examples, find (by mans of
resolvent kernels) solutions of =h following integral equations:

1 o (x)=e* + [ ()
8 -wfx]=i—h—:!r‘*"'tp'|:r]m'

&
3. plx)=sinx+2 [e™" gt )

L]

4 p(x)=x3"- fl'i‘-"'-.r{-'ldf

Y24 cosx
5. = RN T A [ — dr
()= sinrs (18 0 ()

Mote 1: The unique solvability of Voltgma-Lype integral eguations
of the second kind

p(x)= £(x)+ 2 [K(x. 0o (1)t (4.4.2.6)

holds under consaderably more general assumptions with respect 1o
the function f{x) and the kemnel K({x. t) than their contimuty.

Theorem: The Volterra integral equation of the second kind (1),
whose kemel K(x, t) and function fix) belong, respectively, to
spaces Lo(0l) and La(0, a), has one and only one solution in the

space L0, a).
This solution iz given by the formula

plx)= ﬂr}+i}R{:,r; A (¢)dt (4.4.2.7)

where the resolvent kemel Rix, t; A) is determined by means of the
series

Rlir2)=3 2K, . (x7) (4.4.2.8)
b=

which is made up the iterated kemnels and converges almost

everywhere.

Note 2: In equation of uniqueness of solution of an integral
equation, an essential role to played by the class of functions in
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which the solution is sought (the class of summable, quadratically
summable, continuous, etc., functions)
Thus, if the kemel Kix, 1) of a Volierra equation 15 bounded when
x varies in some finite interval (a, b) so that
| Kix, )] = M, M = const, x ¢ (&, b)

and the constant term of f{x) is sum able in the interval (a, b),

then the Volterra equatian has, for any value of A, a unigue
summable solution @ (x) in the interval (a, b).
However, if we give up the requirement of summability of the
solution, then the umgueness theorem ceases to hold in the sense
that the equation can have nonsummable solutions along with
summable solutions.
P. 8. Uryson {[29]) constructed clegant examples of integral
equations (see Examples | and 2 below) which have summable and
non summable solutions even when the kemel Kix, t) and the
function f{x) are continuous.
For simplicity we consider [{x) = 0 and examine the integral
equation

¢ lx)= ]ﬁ{: —thp r)dr (4.4.2.9)

where K(x, 1) 15 a continuous function.
The only summable solution of equation (1) is ¢ (x) = 0.

Example 1: Let 0 £t < x <a(a> 0, in particular a = +e).
2
K(r.t)= = —— (4.4.2.10)

The function Kix, t) is even holomorphic everywhere, except al he
point (0, 0). However, equation {(4.4.2.9) with kernel (4.4.2.10)
admits nonsummable solutions, Indeed, the equation

plx) =2 [ - 2 2R @42.11)

F.r,].t'“ + 1 x x°
has a summable solution since the function

2 arctan ¢’
'ﬂ::]_ T X

15 bounded and continuous everywhere except at the point x =0,
The function

wI[:’JF{

where y (x) is a solution of (4.4.2.11) wall now be a nonsummable
solution of (4.4.2.9) with kernel (4.4.2.10).
Indeed, for x = 0 we have

S o taz1a
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2% xr?
jK(x thp (1)dt = = j = 4 ()dt + = Xt (4.4.3.13)
x* 1x0+2
B}r virtue of equation {4.4.2. 11), the ﬁrst term on the right of
(442.13)is

w (I)"l‘ 2 aﬂ:tanx
xl

The second term }fields

P |r-:x
E—I Xt =E[ian:tanLJJ =—-2—~amt|1n~]— (x> 0)
=0

i xt+1t wlx’ x

Thus
2 arctan.r 2 1
Iﬁ{x O (e)dt =y (x }+ +—— arctan —

v )+ L= ()

Which means hat the function ¢ (x) defined by (4.4.2.13) is a non
sum able solution of equation (4.4.2.9) with kernel (4.4.2.11)

Example: 3 The equation
e (x)= f:"’;a{r)dr (0<xr=1)
o

has a unique continuous solution ¢ (x) = 0. By direct substitution
we see that this equation also has an infinity of discontinuous
solutions of the form

#(x) = Cx™
where C is an arbitrary constant

4.4.3. The Method of Successive Approximations

Suppose we have a Volterra-type integral equation of the second
kind:

o(x)=flx)+ 2 ]‘K(.r —t)o (t)dt .. (44.3.0)

We assume that f{x) is continuous in [0, a] and the kernel K(x, t) is
continuous for0 <x<a, 0=t <x.
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Take some function @y (x) continuous in [0, a]. Putting the
function j o{x) into the right side of (4.4.3.1) in place of @ (x), we
get

2, ()= 1)+ 2 [Klx o, ()

The thus defined function ¢ ((x) is also continuwous in the
interval [0, a]. Continuing the process, we obtain 4 sequence of
[unctions

Polx). @ (x), ..., palx), ...

where

o, (5)= f(x)+ 2 Klx—rlp,., (e

Under the assumptions with respect to f{x) and K (x, 1), the
sequence {@, (X)} converges, as n =+ o, o the solution @(x) of he
intepral equation (4.4.3.1) (see [13]).

In particular, if for @ ofx) we take f{x), then @ #x) will be
the partial sums of the senes (4.4.2.2), of Sec. 3, which defines the
solution of the integral equation (4.4,3.1). A suitable choice of the
“zero™ approximation ¢ ofx) can lead to a rapid convergence of the
sequince [ ¢u(x)} 10 the solution of the integral equation.

Example: Using the method of successive approximations, solve
the integral equation

o(x)=1+ fol)ar

taking o o(x) = 0.
Solution: Since @ g{x) = 0, it follows that ¢ (x) = 1, Then

&, {:}=I+:F!I:ﬂ'=l+,r

x |
p, (x)=1+ _[{|'+r]a&=l+:+51-—~
L]

7 it o x
Py [:}=t+a{[|+r+?]m=|+;+i+i

@, [r}=1+£+i+...+

B (n-1)
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Thus, @ 4(x) is the n™ partial sum of the series E,x_r =¢* . Whence

=

it follows that @,(x)———>e". It is easy to verify that the
function ¢ (x) = ¢ is a solution of the given integral equation.

4.4.3.1. Self Assessment Questions:

Using the method of successive approximations, solve the
following integral equations:

Lp()=x-Je-dp (). ple)=0
z.w{x)=1vj(x-sm}dn p4lx)=0.

5 p@)=1+ [le-rp (). p)=1

4 w{x}=x+l—r;|'.-;a[.!]dr;[ﬂ}pb(x}=l, G, (E)=x+1
5.5;:(:}:%”‘;[@:(;)&::

@ o,x)=1, @ p,x)=x (0 -;pu{x1=f£-+x

Prove that the equation
¢ (x)- 4 [K(x,0)p tr)dr =0
1]

has, for any A, a unique solution ¢(x) = 0 in the class L,(0, a).
The method of successive approximations ean also be applied to
the solution of nonlinear Volterra integral equations of the form

wx)=y, + ]ﬁ{:, we)]dt (4.4.3.2)
or the more general equations
o (x)=f(x)+ IF (x,2,00 (r))at (4.4.3.3)

under extremely broad assumptions with respect to the functions
F(x, t, z) and f{x). The problem of solving the differential equation



94

P oFsh A=

reduces to an equation of the type (2). As in the case of linear

integral equations, we shall seek the solution of equation (3) as the

limit of the sequence {@ J(x)] where, for example, gofx) = x), and
the following elements py(x) are computed successively from
the farmula

p ()= £lx)+ [Flerp, O (£=12...) (4.4.3.4)

It fiix) and F(x, t, z) are quadratically summable and satisfy the
conditions
|Flx.t.2, )= Flet.2, ) 5 alx, o)z, -2, (4.4.3.5)

[Pl f@}}m!nm (443.6)

Where the functions a(x. 1) and n(x) are such that in the main
domain{(0 =t <x<a)

[

[ (x)etx s N7, i[dr]'ul{:_;}m < A’ (4.4.3.7)
b L i

it follows that the nonlinear Volterra integral equation of the
second Kind (4.4.3.3) has a unique solution @ (x) e L, (0,a)which
15 defined as the limit of j.(x) as n-px:

g (x)=limg (x)

LR

where the functions g.(x) are found from the recursion for mulas
(4.4.3.4), For gnix) we can take any functon in Li{0a) (in
particular, a continuous function), for which the condition (4.4.3.6)
i5 fulfilled. Note that an api choice of the zero approximation can
facilitate solution of the integral equation.

Example: Using the method of successive approximations, solve
the integral equation

_f+e’l)
4?{-"":'—[‘! ™% dt
taking as the zero approximation: (1) @o(x) =0, (2) @ax) = x.

T

dr
= |—— =arctanx,
w,(5) ;,[1+:= %

1 + arctan’ ¢ | :
¢, lx)= !—-—-—]H, lf :mt&nx+-3—mun X,
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.'I:I
i |+[ﬂ.l'l:l.a.ﬂ.l'+-;-ﬂ.ﬂ..‘t:ﬁﬂj'r |

ﬁll{.l':h:!‘ —dlt
; 14+
=arctan x + —arcian’ x ¢ ———arctan® ¥ 4 ——arctan” x

- x x+ian:um’x+
s 1+ 3 In3
.. M iy 134

ArvLar In -|-
SxTx0 +5='.r=9* ”hm:nzs“m o

"1' ] 1. 1%
arcian X+ ——————arcan ...
IxdxTx9x13 7«9 w15

Denoting arctan x = u and comparing expressions for qux) with
the expansion
O I3 o ) FYE SRR,
— 1\.'? e 2
where B, are Bernoulli numbers*, we observe that
q:'n{:'_l ——*tan{arctan x) = x

It can easily be verified that the function g{x) = x s a solution of
the given integral equation.

4.4.4. Convolution-type aguations

Let @ (x) and @,(x) be two continuous functions defined for

x20. The convolwion of these two functions is the function
¢, (x) defined by the equation

p2(x)= [o,(c- o, ()ar (44.41)

This function, defined for x=0, will also be a continwous
function. If ¢ (x) and @, (x) are orginal functions for the Laplace
transformation, then

L, = Loy Ly (4.4.4.2)
i.e., the transform of a convolution is equal to the product of the
transforms of the functions (convolution theorem).

Let us consider the Yolterra-type integral equation of the second
kind
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olx)= flx)+ :‘[I'f.{x—f}p (¢ )t (4.4.4.3)

the kemnel of which is dependent solely on the difference x-1. We
ghall call equation (4.4.4.3) an integral equation of the convolution

type.
Let fix) and Kix) be sufficiently smooth functions which, as

x=+a, do not grow faster than the exponential function, so that

Lf{x] sMev, K {:] = Me™ (44.44)
Applying the method of successive approximations, we can show
that in this case function ¢(x) will also satisfy an upper bound of
type (4.4.4.4)

ko (x] < M o™
Consequently the Laplace transform of the functions f{x), Ki(x) and
¢ x) can be found (it will be defined in the half plane Re p=s> max

(51, 52. 53)).

Let

flx)=Flp) elx)=dp) Kix)=K(p)
Taking the Laplace transform of both sides of (4.4.4.3) and
emploving the convolution theorem, we find

@(p)= Fp)+Kp)p(p) (4.4.4.5)
Whence
()= I—_ﬂiﬁmw +1)
The original function g{x) for @ p)will be a solution of the
integral equation (4.4.4.3).

Example: Solve the integral equation
o (x)=sin x +I]ms{:: —thp (r)er
1}

Solution: It is known that

| e 1
P+l P+l

Let ¢{x) = p). Taking the Laplace transform of both sides of the
equation and taking account of the convolution theorem (transform
of a convolution) we get

®(p) = —— +—E—ap)

5inx =

Pl pi+l

Whence
2p | 1
ﬂl'{p{ p=+li|_pz+—1
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1 .
G{P}nw = Ig

Hence, the solution of the given integral equation is
#x) = xe”

4.4.4.1. Self Assessment Questions:

Solve the following integral equations
Logle)=¢" - e p(r)dr
@

2. p(x)=x- :[w-;n:::m

3 plx)=et s :[a--p (1)l

4 pl)=x- fle-p (e

5. 9 (e)= conx = f{e~)eos(x~)p ()

The Laplace trunsformation may be emploved in the solution of
systemns of Volterma integral equations of the type

p.lx)= rlx)+ E }r;.ul[,t ~thp () (i=1,2,...5) (4446

where K (x), f,(x) are known continuous functions having

Laplace transforms.
Taking the Laplace ransform of both sides of (4.4.4.6). we get

0,(p)=F)+ TR, (P, () (=12.5)  (4447)

This is a system of linear algebraic equations in @ {p). Selving it
we find @, (p)., the original functions of which will be the
solution of the original system of integral equations (4.4.4.6),

Example: Solve the system of integral equations
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9, (x)=1-2 [ g, (at + [, ()a

i 2 (4.4.8)
@y (x)=4x- I‘F'Nf-r]d" + 4[{""}?:['}&

Soletion: Taking transforms and using the theorem on the
transform of a convolution, we get

o,(p)=1 -—2-0,(p)+ L 0, (p)
p p-1 P

4 l 4
mz[ﬂ] e —m,(p}+—,¢'-_.[p}
P 7 Fa
Solving the system obtained for @, (p) and @, (p) we find
1 1
©,(p)= 2 =

(pe1f  p+1 (p+1)

@, (p)= L =£- ! +l. ! _.E‘ I
T p-2p+1f 9 p-2 3(p+lf 9 p4l

The original functions for ©(p) and D.(p) ore equal,
respectively, 1o

IFL{'I}: E-: = & p L

1 B
ml[_r}l= %e" +i:£" -EE"

The functions @ (x) and ¢,{x) are solutions of the original system
of the integral equations (4.4.4.8)

4.4.4.2. Self Assessment Questions:

Solve the following systems of integral equations
1. @,lx)=sinx+ Jq;u Ar)dr,
b

p1(x)=1-cosx~ [, ()
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2. p,(x)=¢" + [p,()ar,

p1(6)=1- e ()

3. i) =<+ fp e~ [ep ()

@ilx)=-z- 'Hx =t)p, (r)dr + :[mfs}ﬂ'r

4 y(x)=1- [p, ()

p () =cosx—1+ [, {e)er

p,[;]-nm:+‘j.p,fr]di

o — e — o — S

4.4.5. Volterra Integral qugi@ns with limits {_:,-_'l_':x}. |

Integral equations of the form

@ (x)=flx)+ ].K{’f —t)p (t)at (4.4.5.1)

which arise in a number of problems in physics can also be solved
by means of the Laplace transformation. For this purpose, we
establish the convelution theorem for the expressions

[Kx-tho (t)at (44.52)
It 15 known that for the Founer transformation
F ﬁgi;;-r}p {:_‘Jd:} =f2n G (1) (4.4.5.3)

where ((4),'¥(4) are Fourier transforms of the functions g{x)

and y(x) respectively.
Put g{x=K(x) i.e,
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(x) 0, x>0
S Kix), x=0

@lx), x=0

E-’f13='|i“.fr}={ 0 x<O

(4.4.5.4)

Then (4.4.5.3) can be rewrilten as

‘ {Tﬂl{:wrh{r}dt} R (1) .0 (4455)

To pass from the fourier transform to the Laplace transform,
observe that

F (p)=+2= [F.lip)} (4.4.5.6)
Hence, from (4.4.55)and (4.4.5.6) we get
1 { e~ Ohnt = 7 (o)} o) @45

We now express lu"ﬂ E_{m}f\ in terms of the Laplace transform:
V37 R (i)} = fictademate = Ji(- shema

Putting K{-x}K{x) we get
V2= R (o)} =K. (- p)= fi(-heae
. n
{ T 0af K. o, o w4539

Let us now retun to the integral equation (4.4.5.1). Taking the
Laplace transform of both sides of {4.4.5.1), we obtain

@®(p)= Flp)+K(- p)vl(p) (4.4.5.9)
O(p)= _Fle) (K(-p)=1) (4.4.5.10)

1-K(-p)

or,
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where
K(-p)= [K(-x)edr (4.4.5.11)
1]
The function
" _Fip)
j; s e™dlp (4.4.5.12)

is a particular solution of the integral equation (4.4.5.1). It must be
stressed that the solution (4.4.5.9) or (4.4.5.12) is meaningful only

iif the domains of analyticity of K (- p)and Fip) overlap,
Example: Solve the integral equation

o (x)=x+ [ (1) (4.4.5.13)
Solution: In this case, f{x)=x, Kix)=e", Therefore

F{F]=J:—= K{-p)= IE_I"E’":I'.H;T’—I—. Rep<2
x __F
Thus we obtain the following operator equation

-u:p]-;-, ra{-ﬁm{pr
50 that

®{p)=

(4.4.5.14)

p-2
p(p-1)

nce
[x]: 1 h ™ dp (4.4,5.15)
I|l-\]|n-

Integral (4.4.5.15) may be evaluated from the Cauchy integral
formula. The integrand function has & double pole p=0 and a
simple pole p=1. which appears for y > 1; this is connected with
including or not including in the solution of equation (4.4.5.13) the
solution of the comesponding homogeneous equation

Whe
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o lx)= [ ()
Let us find the residues of the integrand function at its poles:

if'f'r[;h;f'}l en]ﬂ’”" ﬁ'[pf'{_;flf"]bf‘

Consequently the solution of the integral equation (4.4.5.13) 15
@lx)=2x+1+ce’ (C is an arbitrary constant)

4.4.5.1,5elf Assessment Questions:

Solve the integral equations
Log(x)=e"+ [plar

2. p(x)=e" + [ep ()
3 -gu[,ﬂ-cns:-rlj‘s”p (it )t

4. plx)=1 +‘j£"':""'p (e (a=0)

r

4.4.6. Volterra Integral Equations of the First Kind

Suppose we have a Vollerma integral equation of the first kind

[Klxko (f)de = f(x) fl0)=0 (4.4.6.1)
b

where @(x)is the unknown function,

Suppos that K(x.1), %’T'r} Fixyand f{x)are continsous for

Dsx<a, 0=¢=x. Differentinsting both sides of (4.4.6.1) with
respect to X, we obtain

Kz (e} [E2 ()at = 1) (4462

Any continuous solution ¢{x) of equation (4.4.6.1) for 0Sx=a
obviously satisfies equation (4.4.6.2) as well. Conversely, amy
continuous solution of equation (4.4.6.2) for 0% x < asatisfies
equation {4.4.6.1) too.
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If Ki{x.x) does not vanish at any point of the basic interval [0.a]
then equaiion (4.4.6.2) can be rewritten as

olx)=-L '{:}] [K{ J) o (1) (4.4.6.3)

which means it reduces m a "l."-l:r]tl.‘m type integral equation of the
second kind which has already been considered,

If Kix,x)=0 then it is sometimes useful 1o differentiate (4.4.6.2)
onece again w.r.t x and so on.

Example: Solve he integral equation
Jeoslx— i) (1 )elt = x (4.4.6.4)
L]

Solution: The function f{x}=x. K(x,l)=ccs(x-1) satisfy the above

formulated conditions of continuity and differentiability.
Difterentiating both sides of (4.4.6.4) w.r.l x we get

@ (x)eos0 - ]sin[x— £ o (e )l = 1

plx)=1+ Tsi.u[.r —~t ko (1) (4.4.6.5)

Equation (4.4.6.5) is an integral equation of the second kind of the
convolution type.
We find its solution by applving the Laplace transformation

1 1
Op)= -+~ ¥{p)

¥ i
o)=Lt = Lo L 2

2
The function @ (x)=1+ ’En will be a solution of equation (4.4.6.5)

and hence of the original equation (4.4.6.4) as well. This is readily
seen by direct verification,

4.4.6.1. Self Assessment Questions:
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Solve the following integral equations of the first kind by first
reducing them to integral equations of the second kind.

T

1. Ie""ap [.r}d:r =sinx

2, j[?,'-'m{;]d.r - X
]

L]

: r]'a"'w'[r}dr = flx} flo)=0

4. :ﬂt—x‘ w8 Jo (F)ae =§

L

: ]{E-t—r’ —t* Jp ()t = x*

b

4.4.7. Euler Integrals

The pama function or Euler's integral of the second kind is the
function ['(x)defined by the equality

MMx)= Te"r"':i! (44.7.1)
where x is any I:‘:-u:wnpnhr::: number, Re(x)>0. For x=1 we get

)= djl-"dr =1 (4.4.7.2)
Integrating by I::m.rts, we obtain from (4.4.7.1)

Mix)= i;j'e".-'m = HZ—”} (4.4.7.3)
This equation expresses the basic property of a gama function;

Mx+1)=xI(x) (4.4.7.4)
Using (4.4.7.2), we get

M2)=I{l+)=1I1()=1

M3)=I2+1)=202)=2
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T(4)=T(3+1) = 30(3) =3

and, generally, for positive integral n

INm=(n-1}! (4.4.7.5)
We know that
u . ~ 'UI';
}-ﬂ de = T

I
Putting x =¢? here, we obtain
- L
jnr"'r‘ dt=x
H

Taking into account expression (4.4.7.1) for the gamma function,
we can write this equation as

Whence, by means of the basic property of a gamma function by
r{]} Il‘[l |
rdq- = | B = o | .
(4.4.7.4), we find 3)%2 1] 1\'-‘1‘
-!_[5 3 3 1=3 —

Generally, it will readily be seen that the following equality holds:

r[n+ %] Ll ‘1';'[2” ) = (4.4.7.6)

Knowing the value of the gamma function for some value of the

argument, we can compute from (4.4.7.3) the valuye of the
function for an argument diminished by unity. Fro example

e

For this reason
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r( 1] _ @ - (4.4.7.7)

2 33
2
5 __E —~
l'[-'i]— ]5\'21 and s0 on.

It is easy to verify that [(0) = (~1)=..=[{-n)=..=a Above
we defined I'(x)for Re x>0. The indicted method for computing
i x)extends this function into the left half plane, where I'(x) is
defined everywhere excepot at the points x=-n (n is positive integer
and 0).

Mote also the following :n:]sl.iuns

M) - x)= — (4.4.7.8)
E'III.J'I' I
M) x + %] =2 g fir(2x) (4.4.7.9)
and penerally

1“{::!‘::+-::]l‘(r+:] l'(.r+T] {En}: n’ i)

{Gauss-Legendre multiplication theorem)
The gamma function was represented by Wereirstrass by means of
the mualiun

F{I}—ze - [[ni]ﬁ} (4.4.7.10)
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where
}r=1j_m‘[|+l+.l-+__.+—l —!nm‘:ﬂ.ﬂi’?zl--.
- 23 J

T

is Euler's constant. From (4.4.7.10) it is evident that the function
[(z)is analytic everywhere except at z=0, z=-1, z=-2... where it

has simple poles.
The following is Euler's formula which is obtained from {4.4.7.10)
12 l’ | J[ ;]_'
Mzj=-— = |14+= 4.1,
z) :ﬂ{t% += (4.4.7.11)

It holds everywhere except at z=0, z=-1,z=-2..,

We introduce Euler's integral of the first kind B(p,q), the so called
beta function:

I
Blp.g)= [x"'(1-x)"dc (Rep>0, Reg>0)  (447.12)

The following equality holds (it establishes a relationship between
the Euler integrals of the first and second kinds)

B(p,q)- LN ) (4.4.2.13)
I{p+g)

T L

4.4.7.1. Self Assessment Questions:

e ——m o

I. Show that T(1}= -y

2. Show that for Re >0

Ffe)= j[:nl] "

3. Show that

r.{l.:l— rl[ll] =2In2

4, Prove that
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o Dx2ufem)
St o e

e e

4.5. Abel’s Problem
Abel’s Integral Equation and Its Generalizations

A particle is constrained to move under the force of gravity in a
vertical plane (5, 77) along a certain path. It is required to determine
this path so that the particle having started from rest at a point on
the curve with ordinate x, reaches the £axis in time [ = f,(x)
where [ (x) is a given function,

The absolute velocity of a moving particle is v= qflgi;—qi-

Denote by # the angle of inclination of the tangent 1o the £ axis.
Then we will have

a8 == EII = F]'jﬂﬂﬂ'

et
whence

= e dn
J2a(c—7)sin f

1. I L]
Integrating fiom 0 to x and denoting o =@ (n), we get Abel's
1

equation

toln)dn _ .
| V22 £(x)

Denoting —+/2g 1, (x) by f{x), we finally obtain

el oo 4.5.1
nj'ﬁara flx) (4.5.1)

where @¢(x) is the required function and f{x) is the given function.
After finding ¢(r7) we can [ﬂrm the equation of the curve. Indeed

pln)=— mﬂ

whence 77 = ®(F)
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- dn__ (g
a5 = tan #  tanF

= IQE?:ﬁ =, LH}

and consequently the required curve is defined by the parametric
equations

¢=thﬁ]}
n=D(p )

Thus Abel's problem reduces 1o a solution of the integral equation

£ls)= :Iﬂ&,r]w (1)

with given kemel Kixgiven funclion [fi{x)and unknown
function @ix); in other words, it reduces to finding a solution of

the Volterra integral equation of the first kind.
The following somewhal more peneral eguation is also called
Abel's equation

2l
ar= flx 31.6.3
J{; ¥ flx) (4.63)
where @ is a constant, O <o <] (Abel’s generalized equation).
We wall consider that the function [(x) has a continuous derivative

on some interval [0.a]. Mote that for o 2 ]E the kernel of equation

Whence

(4.5.2)

(4.5.3) is quadratic ally non integrable, i.e., it is not an L2 function.
However, equation (4.5.3) has a solution which may be found in
the following manner.

Sopposc equation (4.5.3) has a solution. Replace x by s in the
equation and muliiply both sides of the resulting equality by

s
{:_s}l-

and integrate with respect to s from 0 to x:

1 oli) 4. f{ ” _ s (4.5.4)
K-

e o

Changing the order of integration on the l2ft, we obtain
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]"ﬁ (1)t ]'{1 _ﬂ.fh T Flx) (4.5.5)
where
f{ﬂ
o= [ L5
(4.5.6)

In the inner hmgm.] make the substimtion s =t +y (x-1):
f -
[yl o e S

Then from equation (4.5.5) we have
fip (1)ar = == F(x)
ﬁ #

_sinax s _smr:.r| fls)
¢ lx)="="=Flx) jt:—s}"“ ml (4.5.7)

Thus the only solution of equation (4.53) is given by formula
(4.5.7) which via integration bony parts can also be re written in the

form
o (x)= s-:mrrrlj‘{ﬂl .[ #(s) d:] (45.8)

P PO [P

This solution has physical m-:nnmg only when its absolute value is
not less that | (since @ (x)=

nﬁ
We will show that in the case fix)=C=const, the solution of Abel’s
problem is a cycloid, (The tautochrone problem: to find the curve
along which a panicle moving under gravity without friction
reaches its lowest position in the same time, irespective of is
initial position)
In this case o = ‘]_—1 . Hence, by formula (4.5.8)
1 C

¥ {"'}_ T -qll;

And therefore

-

_'iuz,ﬁ_—
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Whence i =—sin® #
T

Further
_dp _C?2sinfeosf@
df—mﬁ 2T wnf af
z "
= -1+ cos2p)ap
¢u£i[ﬁ+1ﬁin2ﬁ +C
al 2 i
Finally,

! | T
:::F[,ﬂ'+55|n2,ﬁ +(,

1
7= E:i——zl:_I - cos27)

(parametric egualions of the cycloid)

4.5.1. Self Assessment Questions:

1. Show that when f{:}- Cyx the solution of Abel’s problem
will be straight lines.

Solve the following integral equations

F[’H (0ca <)

§ el
{}ﬂﬁl‘_smx
2

4, ﬁ%=e‘
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?iflﬂui

(. Jf]'rird:v

!‘Jm =) =(x, -2)

=-'1In _.-"'n]'

4.6. Volterra integral equations of the first kind of
the Convolution type

An integral equation of the first kKind
!’l:{: ~ 1) (t)elt = fx) (4.6.1)
i}

whose kernel K(x.1) is dependent solely on the difference x-1 of
arguments will be called an integral equation of the first kind of
convolution type.

This class of equations includes, for instance, the generalized Abel
egquation,

Let us consider a problem that leads to a Volterra integral equation
of the convolution type.

A shop buys and sells a variety of commodities. It is assumed that:
(1) buying and selling are continuous processes and purchased
poods are put on sale at once.

(2) the shop[ acquires each new lot of any type of poods in
quantities which it can sell in a time interval T, the same for all
purchases;

{3) each new lot of goods 15 sold uniformly over time T.

The shop initiates the sale of a new batch of goods, the total cost of
which is unity. It is required to find the law @(r) by which it should
make purchases so that the cost of goods on hand should be
constant,

Solution: Let the cost of the original goods on hand at time t be
equal to K(t) where

) .

I__l- -rﬁ']-
T

0 =T

Kir)=

Let us suppose that in the time interval between T and T+dr

goods are bought amounting to the sum of #TET | This reserve
diminishes (due to sales) in such a manner that the cost of the

remaining goods at time ! = T is equal Lo Kt =r)¢(r)dr
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Thus, @{r)should satisfy the integral equation
1-K()= [K(r—r)(r)ds

We have thus obtained a Volierra integral equation of the first kind
of the convolution type.
Let f{x) and K(x) be original functions and let

fix)= F(p), K(x)=K(p) §(x) = 8(p)

Taking the Laplace transform of both sides of equation (4.6.1) and
utilizing the convolution theorem, we will have

K(p)é#ip)=F(p) {4.6.2)
hence ®(p)= E—%j (K(p)=o0) (4.6.3)

The original function @{x) for the function ¢(p) defined by (4.6.3)
will be a solution of the integral equation (4.6.1).

Example: Solve the integral equation

!’:H.:: ()t = x (4.6.4)

Solution: Taking the Lapalce transform on both sides of (4.6.4), we
obtain

L a(p)=L (4.6.5)
p=l P
=1 1 1 _
henee Bp)=—=—-—=1-x
P PP

The function ¢(x) = | = x is a solution of equation (4.6.4)

=

4.6.1, Self Assessment Questions:

Solve the integral equations

1. :!'mﬂ:-rh (r)dt = sin x

2. jc”up (r )it = sinh x

&
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3. ety () = 2

4, [r’r” Yo (1 belt = sin x
]

5. I-EHqE! (t)dr = x*
b

Note: If Kix,x) = K(}) # 0, then equation (4.6.1) definitely has a
solution. 1f the kemnel - K{x.1) becomes identically zero for t=x, yet
the equation has a solution.

As has already been peinted out before, a necessary condition for

the existence of a continuous solution of an integral equation of the
form

]_f;r_‘_Ti”‘*"[‘J‘” - /i) . (4.6.6)

consists in the function f{x) having continuous derivatives up to the
nth order inclusive and in all its n-1 first derivatives vanishing for
=

This model equation (4.6.6) points to the necessity of
matching the onrders of vanishing of the kernel for t=x and of the
right side fix) for x=0 (the right side must exceed the left side by at
least unity).

Consider the integral equation

r

[l = (e)dt = x (4.6.7)

i
Here fix)=x, n=2. Obviously, fix) ha derivatives of all orders, but
its first derivative f'{x)=1=0; that is the necessary condition is
not fulfilled.

Taking the Laplace transform of both sides of (4.6.7) in formal
fashion, we pet

' o(p)=-L
meﬁ]‘ pz
whence @(p)=1

This is the ransform of the & function &(x)
Recall that §(x) =1
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5" (x) = p

where m is an integer>=10),

Thus, the solution of the integral equation (4.6.7) is the § function,
#lx) = 5(x)

This is made clear by direct verification if we take into account that

the convolution of the & function and any other smooth function
gix) is defined as
&(x)*8(x) = g(x)

S p(x) = g™ () (k=1.23.....)

Indeed, in our case g{x)= K({x)=r and
]E.[x— t0S (r)ar = Klx)= x
]

Thus the sohution of equation (4.6.7) exists, but now in the class of
generalized functions.

4.6.2. Self Assessment Questions:

1. :J[x—:}p f)dr=x* +x-1

2, }'{x—;}p{r]d;=sin.t
3. .]-'[:—J]’p{.r]:ﬂ' =x' +x
4, ]:in[.t—r}w (f)dr=x+1

3. ]'sin{:r ~thp (f)dr =1-cosx

Integral equations of the first kind with logarithmic kernel
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fo @l = () 1(0)=0 (468)
can also be solved by means of the Laplace transformation.

We know that
_[jr+|!

x* = (Rev > -1) (4.6.9)

wel

Differentiate the relation (4.6.9) with respect to w
1 ::IT'{H' + ]} N 1 Inll_[bf +]}

"Inx =
x nx Fl'-l-l El'l-" Pp-l-l
dr(v+1)
or x'Inx= WU _dv 1 (4.610)

p | Te+l)  p

For v =0 we have

i
)
where ¥ is Euler’s constant and formula (4.6.10) takes the form
Inx=—{--Inp)=—DE¥Y (4.6.11)
P P

Let @x)=®p|, f(x)=F(p). Taking the Laplace transform of
both sides of (4.6.8) and utilizing formula (4.6.11), we get

~0(p) =L < F(p)
whence m{p}=—% (4.6.12)
Let us write @{p)in the form

¢{F1=_P2Fbl_f{ﬂ] f'{ﬂ] {_4.-6.'3}

plinp+y)  plinp+y)
Since f{0)=0, it follows that

2IF(p) = 0y = f7(x) (4.6.14)
Let us return to formula (4.6.9) and write it in the form

" 1

o+ 7

(4.6.9)
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Integrate both sides of (4.6.9) w.rtto v from 0 to o . This yields

e =
A +1 d 0" plhp

By the similarity theorem

X -e""'" | I
II-I iv+ I p]n{np]_ p{Lﬂp +J.nn'}

If we put a = &" then

- |
II‘{!-'-| 1) pl[!np+;j
Take advantage of equality of (4.6.13). E} wvirtue of (4.6.15)
10 e
S~ O
Taking into aceount (4.6.14) and [4::- 1"5}, thi: first tzrm on the right

of (4.6.13) may be regarded as a product of transforms. To find its
original functon, take advantage of the convolution theorem.

8- r{ il

Thus, the solution #{x)of the integral equation (4,6.8) will have
the form

where ¥ is Euler's constant
In particular, for f{x)=x we get

x Irr-;ll-'
i [_::] = -!ﬂl-"—-l-]j dv
The convolution theorem can also be used for solving non linear
Volterra integral equations of the type
@ (=)= flx)+ 2 [olthp (x=1)ar (4.6.16)
o

Let ¢ix)=D{p) fix)=F(p)
Then by virtue of equation (4.6.16)

®(p)= Fip)+ A0’ (p)

(4.6.15)
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f (p)
1+,1-44 F
Wp)=——;

The original function of , if it exists, will be a solution of the
intzgral equation (4.6.16).

Example: Solve the integral equation
T §
[o (e (e —t)ar =% (4.6.17)
]

Solution: Let ¢(x) = ®(p) . Taking the Laplace transform of both
sides of (4.5.171, we get

@ (p)e
i
Mmﬂ{yk:tﬁ;

The function ¢,7(x) = x.¢{x) = -3 will be solution of the equation
(4.6.17).

i e e e R e s —— e s e sl sl | P—— —

4.6.3. Self Assessment Questions:

Solve the integral equations
1. 20 (x)- o ek (x-r)ar = sinx

2 p(x)=1 ’;pmp{:-:}m%ssm

—— e e e —— r—

4.7. Let us sum up
In this block we have discussed the following points
1. We have given the ocdurrence of integral equation and its basic
concepl
2. We have also shown the relationship between a differential
equation and an integral equation.
3. We have also defined Volterra integral equation, its resolvent
kernel and solution of Volterra equation by resolvent kermel,
4. We have given the solution of Volierra equation by succesaive
approximation.
5. The concept of Euler's integral, Abel’s Problem and Abel's
integral equation are also given,
6. Finally we have discussed the Volerra equation of the first kind
of the convolution tvpe

L=
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BLOCK 5
FREDHOLM INTEGRAL EQUATIONS

Structure

3.0 Introduction
5.1.10bjective
3.12Fredholm integral equation
5.121Fredholm equation of Second Kind
3.1.2.1.1.8e!f Assessment Questions.
5.1.2.2 ethod Fredholm determinant
1.2.2.18elf Assessment Questions
1.2.2 2 Self Asscssment (Quesiions
2.1.2.3.Iterated Kernels, Construction of resolvent kernel
with tteruted kernel
5.1.2.3.1 Beilf Assessment Questions
2.1.3Imegral equation with degenerate kerne!
1.3.1 Self Assessanent (uestions
5.1.4Characteristic numbers and eipen functions
5.1.4.1.5c!f Assessment Questions
5.1.550lution of homopgencous integral equations with
degenerate kernel
5.1.5.1.5¢If Assessment Questions
3. l.6Nonhomogenous Symmetnc eguation
5.1.6.1.5elf Assessment Cuestions
3.1.7Let us sum up
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5.0 Introduction

In the theory of integral equation the well known theorems of
linear algebra which are related to solution of system of linear
algebraic equations play an important role.

5.1.1 Objectives

After tr.admg this block, you will be able to
understand the concept of Fredholm integral equation

Understand the method of Fredholm determinant,
iteraled kemel

Construct resolvent kernel using iterated kemnels
Know the concept of degenerate kemnel, Characteristic
number and eigen functions
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¢ Know the solution of homogencous intzgral equation
and non-homngeneous symmelric system.

5.1.2.Fredholm integra! equation

5.1.2.1. Fredholm Equations of the Second Kind.
Fundamentals

A linear Fredholm integral equation of the second kind is a
equation of the form

o(x)-4 ]K(x,rh: (r)dr = f(x) (5.1.2.1.1)

wherz @(x)is the unknown function, K(x,r) and f(x)are known
functions, x and t are real variables varving in the interval (a,b) and
A 1s a numerical factor.

The function K(x,r)is called the kemnel of the integral equation
(5.1.2.1.1); it is assumed that the kernel K(x,r)is defined in the
square QMa<x<b,a<r<blinthe (x {'plans and is continuous
in Q or its discontinuities are such that th: double integral

t[fﬂli[.ul_’;ir:ﬂ

has a finite value.
If f(x)= 0equaiion {2.1)is ron homogoneous; but if f{x)=0,
then (5.1.2.1.1) takes the form

]
9 (x)-2 [Kix. ) ()ar =0 O e 2 e )

and is called homogoneous.

The limits of integration, a and b in equations (2.1.1) and (2.1.2) is
any function @(x) which, when substituted into the equations,
reduces them to identities in x € (a,b)

Example: Show that the function @(x) = sin % 15 a solution of the

Fredholm type integral equation

w(x}——’;:jx(x.:b{r}dr%

where the kemnel is of the form
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x(2=1)

K =100 )
2

, DEx=r

, rsxsl

Solution: Writ the left hand side for the equation as
-2 (sl (-

-9 {rl—”TJ{n'j'ﬁfx,:hr (¢t + ;iic[x.r}sr{dﬂ‘-!}

- 262150 s 2o 0

22 o+ oo 1]

Substituting the function si.u? in place of @{x) into this

exXpression, we get
] .1 Tt
Tx y smT )
sin—=-=- {l—x}!r 3 ﬂ'f+.l!'|,r2—F} dr

Thus, we have %'% which, by definition, implies that

L TX . . . .
@ (x)= smTI is a solution of the given iniegral equation.

Check 1o see which of the given functions are solutions of the
indicated integral equations.
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5.1.2.1.1.Self Assessment Questions

1. @ (x)=1, F{I}+!r{£" —I:lp (et =" = x
2, lpl:,:}=£'[2.t—-§—} np[x;'l+2l'[e""¢r{r}dt=2xe‘

3. plx)=1- EsmrT @ {x]*?ms[: + 1) (1)t = 1

4 plx)me, plx)+a Ij‘sin.w-;a ()t =1

5. @ (x)=cusx, -;EJ{::]—]{.‘:! -I-.I']bﬂﬁh;:l (£t = sinx

e e ———p—

5.1.2.2. The Method of Fredholm Determinants

The solution of the Fredholin equation of the second kind

plr)-a4 ]‘u[:,:]p{r}d; = fx) (5.1.2.2.1)
is given by the i‘u:ﬂm]a
plx)=rlx)+ 2 [R{xt )f (r)di (5.1.2.2.2)

where the function R(x,i;4)is called the Fredholm resolvent
kernel of equation (5.1.2.21) and is defined by the equation

Rlx,r:d )= ﬂ[":’“; ) (5.1.2.2.3)

provided that INA) # 0. Here D{x,1; 1) and [N1) are power
series in A

Dx, ;4 }= K{x,:}+ i {:Ilft B (z.r)i" (5.1.2.2.4)

Dii }:t+i£‘7:.r—c,.1* (5.1.2.2.5)

Fnl
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whose coefficients are given by the formulas

Kirn) K{xg) .. Kl
K. i) ... Kilr,.e)
s,{:.:}:}-,.’]' lil'uir_:;r} r:{-lri-f.} K{r.;:f,.} dr g, (512286

s

, x[':',',:] r-:{f:r.] . u{r'.”.-.}

and B,(x,r) = K(x.1)

K1) K)o Kiae)
|l-:{:1,a,] Kire) o Ki.e,)

¢, ] KEa) Klos) o Xer)|, o s1227)

K[.I'._.fl] E-{'r-l'rz} Ll “{:rn-r-}
The function Dix,i;4) is called the Fredholm minor, and [{A)
the Fredholm determinant. When the kemnel K(x.r) is bounded ot
the integral
LY EM T
has a finite value, the series (5.1.2.2.4) and (5.1.2.2.5) coverdge for

all values of 4 and hence are entire analytic functions of 4.
The resolvent kemnel

D{x,r_;.-l }

Dii)
is an analytic function of 4 Wwhich are zeros of the function D(4).
The latter are the poles of the resolvent kemel R(x,7;4).

R(x,1;4 )=

Example: Using Fredholm determinants, find the resolvent kernel
of the kemel K(x.)=xe':a=0bh=1,
Solution. We have B,(x,/) = x¢'. Further

1o f
B,(x,1)= ‘1:‘&.- IEJ.
0

€ he

dr, =0
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[ By i

te® e |drde, =0

te"  te®

Since the determinants under the integral sign are zero. It is
obvious that all subsequent B_(x,#) = 0. Find the coefficients C,,

1 1
Cy = ‘[K{‘:I"r!l Jit, = _I.flfr"ﬂ: =1
0 2

c - III i"l-E'h
T oalne” ir e"
Obviously all subsequent ' are also equal 1o zero.
In our case, by formulas (5.1.2.2.4) and (3.1.2.2.5) we have

Dixnli=Kixti=x¢'; DNA)sl=na
Thus,

k(x4 )= _Dlntd )

DAY 1-2

Let us apply the result obtained to solving the integral equation
o(x)-2 [se'p()dr=f(x) (1e1)
i
By formula (5.1.2.2.2)
1 i
xe
o (x)= i)+ 4 [ flo)a
e
In particular for f{x) =" we get

o

5.1.2.2.1 Self Assessment Questions :

dnﬁlu{!

x
-4

1. Kfx,f)=2x-r 0sxsl, Osrsl

2. Klx,f)=x"r - x’; Dsxsl, 0gesl
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3. K(x,1)=sinxcosr; Dex<lr, Osr<la
4. K(x,#)=sinx —sins; lsxsix, 0sts2n

Practically speaking, only in very rare cases 15 it possible o
compute the coefficients B (x.f1and C_ of the series (5.1.2.2.4)

and (5.1.2.2.5) from formulas (5.1.2.2.6) and (5.1.2.2.7), but from
these formulas it is possible to obtain the following recursion
relations:

B [x,0)=C Klx.1)- n]ﬁ{x.s}ﬂ,_,{r,t]da (5.1.2.2.8)

]
C, = B, (s.5)ds (5.1.2.2.9)

Knowing that the coefficient C, =1 and 8,(x,r) = K{x,f), we can
use formulas (5.1.2.2.9) and (5.1.2.2.8) to find, in succession
Cl :HI [I1 ;]r 31{11;}!{"] E.I'Hﬂ S0 0T

Example: Using formulas (5.1.2.2.8) and (5.1.2.2.9) find the
resolvent kernel for the kemel K(x/)=x-21, where 0<x<1,

0=s=l
Solution: We have O, = |, B,(x.f) = x = 21. Using formula

(5.1.2.2.9) we find C, = :[{- ¢)ds = -%
L ]

By formula (5.1.2.2.8) we pet

B,[I,;}: —i;—lr— I{I—I.TI.F—II}E& =—x={+2xt +§
We further obtain
1
C,= J[—23+25“‘1' +3].:t;= !
: 3 3

x—2f

1
B, (x1)=- ‘2[[I‘24‘{‘5‘f+2.5‘!+%]d5=ﬂ
i

C,=C,=...0,B,(x,1) = B,(x,/) =...=0
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1

D(a)=1+2+ 2

6
D{-f:'ii ]=.1'—1f+[.:+r—1r.'—g}t

3

The resolvent kemel of the given kemel is

x=214 [Ii-l'—.zﬂ-%}l
Rlx,r;4 )= FRE

1+'1—r-F-—ﬁ—

5.1.2.2.2. Self Assessment Questions:

Using the recursion relations (5.1.2.2.8) and (5.1.2.2.9),
find the resolvent kemnels of the following kemels.

LE(x,t)=x+r+1; -15sxs), =-1<¢s1
2. K(xe)=1+3x;, 0sx<], 0zl
3. K(xf)=4xr-x*; 0=x=l, 0sr21
4. Klxt)=e""; 0=xsl, 0s=r<l

5. K(x,t)=sin{x+¢} O0sxs2r, 0<1<2x

Using the resolvent kemel, solve the following integral equations:

1. elx)-4 lisin{xﬂ}p (£)dr =1
2. ;r[x}-,z;[{zf-:h ()t = ﬁ

3. plx)- zj[sinxnnsfﬁr (t)dt = cos2x

L]
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]

4. @ (x)+ fep ()dr =&
1]

5 ¢ (x)-4 Ill[d.t'.r— r"}p'{.rjldi' =X

5.1.2.3. Iterated Kernels. Constructing the Resolvent
Kernel with the Aid of Iterated Kernels

Suppose we have a Fredholm integral equation
A
pla)-2 [Klxik (1) = f(x) (5.1.23.1)

As in the case of the Volierra equations, the integral equation
(5.1.2.3.1) may be solved by the method of successive
approximations. To do this, put

elx)= flx)+ i*ﬁ )i (5.1.2.3.2)

Aal

where the w, (x)are determined from the formulas
v )= [k(en)s (D

o= [, (= K, el ()

w(e)= (Kl ()= K, () ()

and 50 on,
Here

K (ot)= [l.K, 2.)c

K, (xf)= }K[:.:]K, (z,0)dz

and generally,
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K, (xt)= ljx[:.:]rcﬂ_, (z.¢)dz (5.1.2.3.3)

n=23... and K, (x,r)= K(x.r) The functions K (x,r) determined
from formulas (5.1.2,3.3) are called iterated kemnels. For them, the
following relation holds:

K, (%)= ]'ﬁ.[1=31ﬁ,-.{s.r}m (5.1.2.3.4)

where m is any natural number less than n.
The resolvent kernel of the integral eguation (5.1.2.3.1) is
determined in terms of iterated kemels by the formula

Rixd )= imﬂ{x,:}.a"-' (5.1.2.1.5)

where the series on the right is called the Neumann series of the
kemel Kiz, /). It converges for

1
Fl — 5123,
. I*CJg (5.1.2.3.6)

& Y

where B = [ [K*(x.t)deat

The solution of the Fredholm equation of the second kind
(3.1.2.3.1) is expressed by the formula is expressed by the formula

@ (x)= flx)+4 :Fﬁ{x,r;a V(e )ae (5.1.2.3.7)

The boundary (5.1.2.3.6) is essential for convergence of the series
(5.1.2.3.5). However a solution of equation (5.1.2,3.1) can exist for

vnlu:s.uﬂil:%tsmk!.

Let us consider an example:

1
elx)-1 Jp ()t =1 (5.1.2.3.8)
]
Here K(x.r) =1, and hence
Bl LI
B = [ (K (xe)drds = [ [drdr =1
L] ]

Thus the condition (5.1.2.3.6) gives that the series (5.1.2.3.5)
converges for |4 <1
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Solving equation (5.1.2.3.8) as an equation with a degenerate
1

kemel, we get (1-A)C =1, where C= [p()ar. For [4|>1,
L]

hence for A4 = 1the integral equation (5.1.2.3.8) does not have any
solution. From this it follows that in a circle of radius greater than
unity, successive approximations cannol converge for equation
(5.1.2.3.8). However, equation (5.1.2.3.8) is solvable for |4|<1.

Indeed, if 4#1 , then the fanction @{x) = i'il'I is & solution of the

given equation, This may readily be verified by direct substitution.

For some Fredholm equations the Neumann series (5.1.2.3.5)
converges for the resolvent kemnel for any values of A Let us
demonstrate this fact,

Suppose we have two kemels: K(x)and L(x,0). We shall call

these kernels orthogonal if the following two conditions are
fulfilled for any admissible values of x and 1.

}-K[x. ::li.'l::*f:ldz =, I]'.L{x,z]ﬁ[z.i']-ﬂ'z' =0 (5.1.2.3.9)

Example: The kemels Kix!)=xr and L{x1)=2z"1" are
orthogonal on [-1,1].

Indeed,

i I
1,2 — ] :1 -
-!{EI_ ¢ ].a': Xt ‘! dr =0,

ﬂ: Iﬂ}ﬂr_—fi"[ dz =10,

There e:usr kemels which are orthogonal 1o themselves. For such
kemels K,(x,0)=0where K,(x,r)is the second iterated kernel. It

is obvious that in this case all subsequent iterated kernels are also
equil to zero and the resolvent kemel coincides with the kemnel
Kz, 1)

Example: K(x.t)=sin%-20<xs2r0srs2nr
Ve have

?Jr'sin{.'-:— 2z )sin(z - 2¢)ds
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ix
= % f[cns{x+2:—33)-cus(x—2r—:]]ciz =
o

m=lx

= l[-%sin{x+2:—3z}+ sin(x-ir-z]y =0

2 2w}

Thus in this case the resolvent kernel of the kernel is equal to the
kernel itself:

R(x,t; A) =sin(x - 21)
so that the Neumann secries (5.1.2.3.5) consists of one term and
obviously, converges for any 4.
The iterated kernels K, (x,f)can be expressed directly in terms of

the given kernel K(x,r) by the formula

K, (x.1)= T]...}K(x,s,)!([s,,sz}m

K(s,,.t)ds, ...ds,, (5.1.2.3.10)

All iterated kemels K, (x,f)beginning with K,(x,r) will be
continuous functions in the square a < x<b.a <! <bif the initial
kernel K(x,r) is quadratically sum &ble in this square.

Example: Find the iterated kernels for the kernel K(x,0)=x-1r if
a=0,b=1.

Solution: Using formula (5.1.2.3.2) we find in succession:

Ki(xf)=x-t

K (x:) I{I Jls—r)ds—iﬂ—xr-l

K,(x,r)= !(.:: 5 ﬂ—sr—%]cis=—xl_;

2 3

1] 1 1 |
K.n) =~ fle-so-o)s - _Egl(x,;}pa[iﬂq;"]

X+/ 1 1 x-t
K. - = — _—
(J: r] = I{x 5 -—-—-——x!~ ] = IEKJ{I,I} e
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h’.,l{x,l]-

sk (x. r} Lﬂ[“”-_ﬂ-_l.]

1274 2 3

From this u follows that merated kemels are of the form:
(1) for n=2k-1|

Kaualrr) = ”' _(x—1)

(1) [ x+1 1
(2) for =2k, K, (z41)= 12“( E :r—;]

where k=1,2.3,..

5.1.2..3.1. SelfA Assessment q“esl:jnns'

Kilx.t)=sin(x -t} a=0, !J=E {n=23)

2. Klxt)=(x-1F: a=-1 b=1 (n=23)
3. Kix.f)=x+sinr; a=-x, b=n

4 Klx./)=xe', a=0, b=I

5.1.3. Integral Equations with Degenerate Kernels.

. . S | PRSI r——

The kernel Kix.1) of a Fredholm integral equation of the second

kind is called degenerate if it is the sum of a finite number of
products of functions of x alone by functions of t alone; ie., if il is
of the form

K(x,r)= a,(x), () (5.1.3.1)
bal
We shall consider the functions a, (x)and &, (r)(k=1.2,....n)
continuous in the basic square @ < x.f £ b and linearly
independent. The intepgral equation with degenerate kernel (5.1.3.1)

@ lx)-4 }[im(rh {f}Jwirla% =flx) (5132

il
15 solved in the following manner.
Rewrite (3.1.3.2) as

olx)= +.-1.E.|.‘.|’ {r}ji': ¢ o (i )t (5.1.3.3)

[ ]|



133

and introduce the notation

j[b, el)ar=C, (k=12....n) (5.1.3.4)
Then {51.3.3} becomes

@ lr)= flx)+ 4 gr:. a,(x) (5.1.3.5)

where T, are unknown constants, since the function @{x) is

unknown.
Thus, the solution of an integral equation with degenerate kernel
reduces to finding the constants O, (k=12_.n) Putting the

expression (5.1.3.5) into the integral equation (5.1.3.2), we get
(after simple manipulations)

${ca- o] 02 Zeaal e, 0)-0

Whence it follows, by vinue of the linear independence of the
functions a_{x)m =12,...#1, tha

C, - JjEr_ {I][_F{[j+ A if.‘,,a,: {.rjl]d; =0

Co =236, Ja . )it = o) (m=12....0)

For sake of brevity, we introduce the notations

O = ffﬂ. ()b, (t)t, 1, = J:Ffu () e Dol
and find that ’
C, -4 ia,_f;', =f, Im=12,..n)

=l

or, in expanded form

n_";l"ﬂn:h: _":"ﬂu-c? -"'h‘lﬂlnfn =||I;

A a5,y +{1_"1"1hr:r —e= 4 EJ"C" “"Ir? (3.1.3.6)

Aa,Ci-Aa,Cy—...+(1-4 ﬂ,..}C'. ".-'rr,!
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For finding the unknowns Cp we have a linear system of n
algebraic equations in n unknowns. The determinant of this system
5

I-Ada, =-4a, .. -4a,

-da, l-Aa, .. -da,

Al )= (5.1.3.7)

-da, -Aa,; .. l1-da,

If VA=#0 then the system (5.1.3.6) has a unique solution C),
Ca.....Cq which 1s obtained from Crammers formulas.

IE1—.-! gy ... —da i =day, ... =-da,
C = | [=day o -da f, ~day, .. o {5.1.3.5)
| e
ald ) .
=da, . -dag S, -da,, ... I-da_

The solution of the integral equation (5.1.3.2) is the function @{x)
defined by the equality

plx)=slx)+ 4 gﬂrﬂ.{r]

where the coefficients Cyp (k=1.2.3....n) are determined from
formulas {5,1.3.8)

ET ==

:
1. gp{:t}—il‘[sjn::rgi (i)t = 22 =
i

2. ¢ (x)- I]‘{r"’“'gn{r}:ﬂ = lan x

E

Lplx)-4 -f[lanrnp (¢)dr = cotx

L

4. p(x)-4 eoslglnclp ()ar =1

5 wlx)- Ij]m:msrw {.r}df = —
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5.1.4. Characteristic Number and Eigen functions

The homogeneous Fredholm integral equation of the second kind
&
¢ (x)- 4 [K(x.t)p (r)de =0 (5.14.1)

always has the obvious solution ¢(x) =0 which is called the zero
solution.

The values of the parameter A for which this equation has non
zero solutions @(x)# Oare called characteristic numbers of the
equation (5.1.4.1) or of the kemel K(x,t) and every non zero
solution of this equation is called an eigen function corresponding
to the characteristic number A .

The number A =0 is not a characteristic number since for A=0 it
follows from (5.1.4.1) that . ¢(x)=0.

If the kerne! K(x,t) is continuous in the square Qfa < x,1 < b}or is
quadratically summable in © and the numbers a and b are finite,
then to every characteristic number A there corresponds a finite
number of linearly independent ecigen functions; the number of
such functions is called the index of the characteristic number.
Different characteristic number can have difterent indices.

For an equation with degenerate kernel

o()-1 [| 3o, (;}]w Od=0  (5.142)

o L k=l
the characteristic numbers are roots of the algebraic equation
1-Aa, -Aa, .. -4a,
-A 1-4 e —A
Az )=|"*% n 0 (5.143)
-Aa, -Aa, .. 1-4da,

the degree of which is p <n. Here A(4)is the determinant of the
linear homogeneous system

(1-4a,)C,~44a,C,~...~4a,C,=0
Aa,C, +(1-Aa,)C, -...—da,C, =0 (5.1.4.4)

Aa,C -Aa,C,—..+(1-14a,)C,=0

where the quantities ame and C, (k, m=1,2,....,n) have the same
meaning as in the preceding section.

If equation (5.1.4.3) has p roots (1< p<n)then the integral
equation (5.1.4.2) has p characteristic numbers; to each
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characteristic number 2_(m = 1,2.., p)there correzponds a non zero
solution

c.e e,

clclR e aa,

o ol Lo d

of the system (5.1.4.4). The non zero solution of the integral
equation (5.1.4.2) comresponding to these solutions, i.e., the eigen
functions, will be of the form

o (x)= 3 Cla,(x), g,(x)= 3.Cia, (x), ..,

il =l

@, (x)= i, (x)

W=l

An integral egquation with degencrate kermel has at most n
characteristic numbes and (corresponding to them) eigen functions,
In the case of an arhitrary (non degenerate) kemel, he characteristic
numbers are zeros of the Fredholm determinant D{A), e, are

poles of he resolvent kemmel RB(x.r;4). It then follows in particular,
that the Volterra integral equation ¢ (x)-4 ‘j‘l{[x,f}p ()t =0
a

where Ki(x.r)e L,(0,) has no chareristic numbers (for i,
A = ¢~

Example: Find the charactenztic numbers and eigen functions of he
integral equation

plz)-2 ]{ms‘ xeos 2 + cosIxcos’ ) (r)dr = 0
Solution. We tmr::
@ (x)= 4 cos’ r]w (r)oos 2edr + 4 mﬁx;[#{rhns’m‘r
b ]
Introducing the notations
C, =?¢f’]mﬁ:ﬂ. C, =]pﬁ]ma’ £l (N
a b
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We pet

@ (x)=C A cos’ x+C,4 cosix (1)
Substitating (2) into (1) we obtain a lincar system of homogeneous
equations:

L L)
E,[I-j. Imn’rm?.rdl]-ﬂ',i Jeosrcos2edr =0
I} 1

~Cd Ims’ £t +C,[I -4 Ims’ fmsjnﬂ}' (3
b o
But since

jms’ rmsﬂm‘=%, j-::u:rﬂrmﬂ:dr =1
] b

m

:[-:m’rd.'r =1, ;I'm’ reos e dr -

It follows that system (3) takes the form
i b
-2\ w0

4,

]

i %
1- % ¢, =0 (4)
L9 ¥
The equation for finding characteristic numbers will be

-4 g
4

Am
0 l-—
B

=0

The characteristic numbers are 4 =i, A, -t
T T

For Aai.symul[ijhmum
x

%g=n
whenece C;=0,C, is arbitrary. The eigen function will be

d(x) = cos’ x.

{ﬂﬁ -0

For A= L . system (4) is of the form
T
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(-1.C, =0
0.0, =0
whence C =0, (5 is arbitrary and hence, the eigen function will be
. (x) = O A cosdx,
or assuming C,4 = 1. we get ¢, (x) = cos3x,
Thus, the characteristic numbers are
4 B
= — i.\_: -
4 x . |
and the corresponding eigen functions are

#,(x) = cos’ x, g (x) = coslx
A homogenous Fredholm integral equation may, generally, have no
characteristic numbers and eigen functions. Or it may not have any
real characteristic numbers and eigen functions.

5.1.4.1. Self Assessment Questions:

Find the characteristic numbers and eigen functions for the
following homogencous integral eguations with degenerate kemnels:

1. @lx)- 4 Isin’;—w{r}dr -l

2, plx)-4 mjsin xcoste (f)dr =0
1k

3. elx)-4 jsin.rsjnn;a: {thdr =0

4. plx)-4 }cusl{r+!};|'|:r}d|; =0

|
5.9 (x)-2 [[452 Ine =90 Inxfo (1)t = 0

T e e T T T

5.1.5. Solution of homogeneous integral equations
with degenerate kernel

The homogonous integral equation with degenerate kernel
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i,
ot)-4 [FahOe@a-o @15
& L k=1

where the parameter A is not its characteristic number (ie.,
Ad=0) has a unique zero soluwtion: $(x)=0. But if 4 is a
characteristic number, then besides the zero solution, equation
(3.1.5.1) also has non zero solutions- the eigen functions which
comespond (o that characteristic number. The general solution of
the homogonous equation (5.1.5.1) i3 obtained as a linear
combination of these eigen funclions.

Example: Solve the equation
elx)-4 ﬂm&z xcos 2 + cos” rmﬂ:}a"lr:}d'r =0
i

Solution. The characteristic numbers of this eguation are
A, =%. Ay =%; the corresponding eigen functions are of the
form

#ix) =cos’ x.4.(x) = cosdx
The general solution of the equation i3

@(x)=Ceos’x if .-1-:i
&

elx)=Ceosix if i=2
a

FCY

o(0)=0 if Aet asl
i

E

Where C is an arbitrary constant. The last zero solution is oblained
from the general solutions for C=0.

5.1.5.1. Self Assessment Questions:
L g (x)-4 [coslx+i)p () =0

2. ¢(x)-2 [arccosxp (1) dr =0

"
3, plr)-2 fﬂ%mﬂ
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4, g:l{_t _EI _:ﬂxh'n l:r]d!:ﬂ

5. @(x)e6 ;[{x’ ~2xtfp () dt =0

5.1.6. Nonhomogenous Symmetric equation

The non homogonous Fredholm integral equation of the second
kind

#ix)— 4 [Kix)plo)ds = £(x) (5.1.6.1)

is called symmetric if its kernel K(x.t) is symmetric K(x.t=K(t.x).
IT" fix) is continuous and the parameter A4 does not coincide with
the characteristic numbers A (n=12...) of the corresponding

homogonous integral equation
p:x}-i]’ﬁ;’[r.lm:}mﬂ (5.1.6.2)

then equation (5.1.6.1) has a unique continuous solution, which is
given by the formula

J%=
ote) = S0~ 25
a=l -

where § (x)are eigen functions of equation (5.1.6.2),

o.(x) (5.1.6.3)

a, = [f(x)g.(x)dx (5.1.6.4)

The series on the right side of formula (5.1.6.3) converges
abzolutely and uniformly in the square a < x,r S b,

But if the parameter A coihcides with one of the characteristic
numbers say A = 4, of index q (multiplicity of the number 4, ) then
equation (5.1.6.1) will not, generally speaking, have any solutions.
Solutions exist if an only if the q conditions are fulfilled:

L]
() =0 or [fix)p,(x)dx=0 (5.1.6.5)

m=1.2,...
that is, if the [fum:[inn I%];:] is orthogonal to all eigen functions
belonging to the characteristic number . A4 In this case equation
(5.1.6.1) has an infinity of solutions which contain q arbitrary
constants and are given by the formula
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plx) = flx)- AETr,&}+E,ﬁk]+Et-pt[:]+.-.+t“4.r_{:j (5.1.6.6)

where C;, Cy, ..., C; are arbitrary constants,
In the case of the degenerate kernel

K(xt) =3 a,(x)b )

formulas (5.1.6.3) and (5.1.6.6) will contain finite sums in place of
series in their right hand members.

When the right hand side of equation (3.1.6.1) i.2., the function f{x)
is orthogal to all eigen functions @, (x) of equation (5.1.6.2), the

function itself will be a solution of eguation (5.1.6.1): ¢(x) = f(x).
Example: Solve the equation
I
#(x) - & [Kix,0)p(t)dt = x (1)

x(t=1) fO0sx=r
here K(x./)=
i {:{;4} fexsl
Solution. The characteristic numbers and their associaled eigen
functions are of the form
A =-x'n gn(x)sinmx,n =12, .

If A=A, then
gx)mx=- 1;44_" 73

will be a solution of equation (1). We find the Fourier coefficients
ay of the riy.hl side of the equation:

a, = frsmmn' Ilﬂ’[ I:'I:IE-HM { ”HI

T

sin (2)

Substituting into (3,1,6.2) we get
ptr w525 D"
r=n{i+n'n)
for i =-n'x" equation (1) has no solutions since
=1
e { .t-'h.'.-.- & [

HT

sin mmx

5.1.6.1. Self Assessment Questions:

Solve the following non homogonous symmetric integral
equations.
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X

21
1. olx) = %!E{x,:}w{!};ﬂ' =5

x(2-1)

Kiray=9,.2
2

Dsxsi,

rsxsl

2 g+ [Kixnplod = xe

sirth xsinh(r - 1)

B sinh/{
Kix/)= ﬂnh_{ﬁ_il_rﬂ_ﬂ rsxsl
sinh{

0<r=1,

5.1. 7 Let us sum up

In this unit we have covered the following poinis

. We have explained the concept of Fredholm equation

2. We have cexplained the method of Fredholm
determinant, iterated kemels and construction of
resolvent kemel with the help of iterated kemels

3. We have also given the idea of integral equation with
degenerate kernel, Characteristic numbers and eigen
functions.

4, Finally we have explained the solution of homogeneous
integral equations with degenerate kernels. Concept of
non-homogeneous  symmetric  equations is  also
provided.



